

 Maharaja Education Trust (R), Mysuru

Maharaja Institute of Technology Mysore

Belawadi, Sriranga Pattana Taluk, Mandya – 571 477

Approved by AICTE, New Delhi,
Affiliated to VTU, Belagavi & Recognized by Government of Karnataka

Lecture Notes on

DOT NET FRAMEWORK FOR
APPLICATION DEVELOPMENT (17CS564)

Prepared by

Prof. Ramya S & Prof.SmithaShree K P

Department of Information Science and
Engineering

Maharaja Education Trust (R), Mysuru

Maharaja Institute of Technology Mysore

Belawadi, Sriranga Pattana Taluk, Mandya – 571 477

Vision

 “To be recognized as a premier technical and management institution promoting

extensive education fostering research, innovation and entrepreneurial attitude"

Mission

 To empower students with indispensable knowledge through dedicated teaching

and collaborative learning.

 To advance extensive research in science, engineering and management

disciplines.

 To facilitate entrepreneurial skills through effective institute - industry

collaboration and interaction with alumni.

 To instill the need to uphold ethics in every aspect.

 To mould holistic individuals capable of contributing to the advancement of the

society.

 Maharaja Institute of Technology Mysore
 Department of Information Science and Engineering

VISION OF THE DEPARTMENT

To be recognized as the best centre for technical education and research in the field of

information science and engineering.

MISSION OF THE DEPARTMENT

 To facilitate adequate transformation in students through a proficient teaching

learning process with the guidance of mentors and all-inclusive professional activities.

 To infuse students with professional, ethical and leadership attributes through industry

collaboration and alumni affiliation.

 To enhance research and entrepreneurship in associated domains and to facilitate real

time problem solving.

PROGRAM EDUCATIONAL OBJECTIVES:

 Proficiency in being an IT professional, capable of providing genuine solutions to

information science problems.

 Capable of using basic concepts and skills of science and IT disciplines to pursue

greater competencies through higher education.

 Exhibit relevant professional skills and learned involvement to match the

requirements of technological trends.

PROGRAM SPECIFIC OUTCOME:

Student will be able to

 PSO1: Apply the principles of theoretical foundations, data Organizations,

networking concepts and data analytical methods in the evolving technologies.

 PSO2:Analyse proficient algorithms to develop software and hardware

competence in both professional and industrial areas

 Maharaja Institute of Technology Mysore
 Department of Information Science and Engineering

Program Outcomes

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex engineering

activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological change.

 Maharaja Institute of Technology Mysore
 Department of Information Science and Engineering

Course Overview

SUBJECT: DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT

SUBJECT CODE: 17CS564

C# is a modern, object-oriented programming language intended to create simple yet robust programs.

Designed specifically to take advantage of CLI features, C# is the core language of the Microsoft

.NET framework. C# was developed by Microsoft within its .NET framework initiative and later

approved as a standard by ECMA C# programming language is a general-purpose, OOPS based

programming language. C# development by "Anders Hejlsberg" in 2002.

 In this course student will learn Microsoft Visual Studio framework along with powerful features

such as object-oriented concepts and Extensible Types. C# syntax simplifies many of the complexities

of C++ and provides powerful features such as value types,refernce type, enumerations, delegates,

lambda expressions and direct memory access. C# supports students to learn generic methods which

provide increased type safety and performance, and iterators, which enable implementers of collection

classes to define custom iteration behaviors that are simple to use by client code. Language-Integrated

Query (LINQ) expressions make the strongly-typed query a first-class language construct.

Students able to gain the skills to exploit the capabilities of C# and of the .NET Framework to develop

programs useful for a broad range of desktop and Web applications. They can use C# to create

Windows client applications, XML Web services, distributed components, client-server applications,

database applications, and much more. Visual C# provides an advanced code editor, convenient user

interface designers, integrated debugger, and many other tools to make it easier to develop

applications based on the C# language.

Course Objectives

1. Inspect Visual Studio programming environment and toolset designed to build applications

for Microsoft Windows

2. Understand Object Oriented Programming concepts in C# programming language.

3. Interpret Interfaces and define custom interfaces for application.

4. Build custom collections and generics in C#

5. Construct events and query data using query expression

Course Outcomes
CO’s DESCRIPTION OF THE OUTCOMES

17CS564.1

Apply the syntax and semantics of C# on Visual Studio .NET FRAMEWORK to

build applications.

17CS564.2 Apply the object oriented programming concepts in c# programming language.

17CS564.3 Analyze value type and reference type in c# programming language.

17CS564.4 Analyze extensible types in c# programming languages

17CS564.5
Develop console applications using c# programming language to resolve a given

problems.

 Maharaja Institute of Technology Mysore
 Department of Information Science and Engineering

Syllabus
SUBJECT: DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT

 SUBJECT CODE: 17CS564

Topics Covered as per Syllabus
Teaching
Hours

MODULE-1:

Introducing Microsoft Visual C# and Microsoft Visual Studio 2015

Welcome to C#, Working with variables, operators and expressions, Writing methods and applying

scope, Using decision statements, Using compound assignment and iteration statements, Managing

errors and exceptions

8 Hours

MODULE-2:

Understanding the C# object model:

Creating and Managing classes and objects, Understanding values and references, Creating value types

with enumerations and structures, Using arrays.

 8 Hours

MODULE -3:
Understanding parameter arrays, Working with inheritance, Creating interfaces and defining abstract

classes, Using garbage collection and resource management

 8 Hours

MODULE-4:

Defining Extensible Types with C#:

Implementing properties to access fields, Using indexers, Introducing generics, Using collections.

8 Hours

MODULE-5:

Enumerating Collections, Decoupling application logic and handling events, Querying in-memory data
by using query expressions, Operator overloading

8 Hours

List of Text Books

1. T1. John Sharp, Microsoft Visual C# Step by Step, 8th Edition, PHI Learning Pvt. Ltd. 2016

List of Reference Books

T1.Christian Nagel, “C# 6 and .NET Core 1.0”, 1st Edition, Wiley India Pvt Ltd, 2016. Andrew Stellman and Jennifer

Greene, “Head First C#”, 3rd Edition, O’Reilly Publications, 2013.

T2. Mark Michaelis, “Essential C# 6.0”, 5th Edition, Pearson Education India, 2016.

T3. Andrew Troelsen, “Prof C# 5.0 and the .NET 4.5 Framework”, 6th Edition, Apress and Dreamtech Press, 2012.

List of URLs, Text Books, Notes, Multimedia Content, etc

1. https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet-framework

2. https://dotnet.microsoft.com/download/dotnet-framework

3. https://dotnet.microsoft.com/learn

https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet-framework
https://dotnet.microsoft.com/download/dotnet-framework

 Maharaja Institute of Technology Mysore
 Department of Information Science and Engineering

Index

SUBJECT: DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT

SUBJECT CODE: 17CS564

Module-2 Pg no

Creating classes and objects & Manage the class and objects 40-45

Understanding values & Understanding references 46-54

Creating value types with enumerations 55-61

Creating structures & Using arrays 62-70

Module 3 Pg no

Understanding parameter arrays 71-75

Working with inheritance 76-86

Creating interfaces & defining abstract classes, 87-95

Using garbage collection to resource management 96-105

Module 4 Pg no

Defining Extensible Types with C#, Implementing properties to access fields 106-113

Using indexers 114-117

Introducing generics 118-128

Using collections 129-139

Module 5 Pg no

Enumerating Collections 140-143

Decoupling application logic & handling events 144-152

Querying in-memory data by using query expressions, 162-170

Operator overloading 153-161

Module-1 Pg no

Welcome to C# 1-7

Working with variables, operators and expressions 8-15

Writing methods and applying scope, 16-23

Using decision statements. 24-30

Using compound assignment and iteration statements, 31-33

Managing errors & Managing Exceptions 34-39

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 1

MODULE 1 [CHAPTER 1]

WELCOME TO C#

Beginning programming with the Visual Studio environment

Visual Studio 2015 is a tool-rich programming environment containing the functionality that you

need to create large or small C# projects running on Windows. You can even construct projects

that seamlessly combine modules written in different programming languages, such as C++,

Visual Basic, and F#.

Create a console application in Visual Studio 2015

1. On the Windows taskbar, click Start, type Visual Studio 2015, and then press Enter.

Visual Studio 2015 starts and displays the Start page, similar to the following.

2. On the File menu, point to New, and then click Project. The New Project dialog box opens.

This dialog box lists the templates that you can use as a starting point for building an application.

3. In the left pane, expand the Installed node (if it is not already expanded), expand Templates,

and then click Visual C#.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 2

4. In the Location box, type C:\Users\YourName\Documents\Microsoft

Press\VCSBS\Chapter 1. Replace the text YourName in this path with your Windows user

name.

5. In the Name box, type TestHello.

6. Ensure that the Create Directory For Solution check box is selected and that the Add To

Source Control check box is clear, and then click OK.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 3

The Solution Explorer pane appears on the right side of the IDE, adjacent to the Code and Text

Editor window:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 4

Writing your first program

The Program.cs file defines a class called Program that contains a method called Main. In C#, all

executable code must be defined within a method, and all methods must belong to a class or a

struct.

Write the code by using Microsoft IntelliSense

1. In the Code and Text Editor window displaying the Program.cs file, place the cursor in the

Main method, immediately after the opening curly brace ({), and then press Enter to create a

new line.

2. On the new line, type the word Console; this is the name of another class provided by the

assemblies referenced by your application. It provides methods for displaying messages in the

console window and reading input from the keyboard.

IntelliSense icons

When you type a period after the name of a class, IntelliSense displays the name of every

member of that class. To the left of each member name is an icon that depicts the type of

member.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 5

Build and run the console application

1. On the Build menu, click Build Solution. This action compiles the C# code, resulting in a

program that you can run. The Output window appears below the Code and Text Editor

window.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 6

2. On the Debug menu, click Start Without Debugging. A command window opens and the

program runs. The message “Hello World!” appears.

3. Ensure that the command window displaying the program’s output has the focus

(meaning that it’s the window that’s currently active), and then press Enter.

4. In Solution Explorer, click the TestHello project (not the solution), and then, on the

Solution Explorer toolbar, click the Show All Files button.

5. In Solution Explorer, expand the bin entry.

6. In Solution Explorer, expand the Debug folder. Several more items appear, including a

file named TestHello.exe.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 7

Using namespaces

First, it is harder to understand and maintain big programs than it is to understand and

maintain smaller ones. Second, more code usually means more classes, with more methods,

requiring you to keep track of more names. As the number of names increases, so does the

likelihood of the project build failing because two or more names clash; for example, you

might try to create two classes with the same name. The situation becomes more complicated

when a program references assemblies written by other developers who have also used a

variety of names.

Namespaces help solve this problem by creating a container for items such as classes. Two

classes with the same name will not be confused with each other if they live in different

namespaces. You can create a class named Greeting inside the namespace named TestHello

by using the namespace keyword like this:

You can then refer to the Greeting class as TestHello.Greeting in your programs. If another

developer also creates a Greeting class in a different namespace, such as NewNamespace,

and you install the assembly that contains this class on your computer, your programs will

still work as expected because they are using your TestHello.Greeting class.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 8

MODULE 1[CHAPTER 2]

Working with variables, operators and expressions

Understanding statements

 A statement is a command that performs an action, such as calculating a value and

storing the result, or displaying a message to a user.

 We combine statements to create methods.

 Statements in C# follow a well-defined set of rules describing their format and

construction. These rules are collectively known as syntax. (In contrast, the specification

of what statements do is collectively known as semantics.) One of the simplest and most

important C# syntax rules states that we must terminate all statements with a semicolon.

For example, Without the terminating semicolon, the following statement won’t

compile:

Console.WriteLine("Hello, World!");

NOTE: C# is a “free format” language, which means that white space, such as a space character

or a new line, is not significant except as a separator. In other words, we are free to lay out our

statements in any style we choose. However, we should adopt a simple, consistent lawet style to

make our programs easier to read and understand.

Using identifiers

 Identifiers are the names that we use to identify the elements in our programs, such as

namespaces, classes, methods, and variables. In C#, we must adhere to the following

syntax rules when choosing identifiers:

1. We can use only letters (uppercase and loourcase), digits, and underscore

characters.

2. An identifier must start with a letter or an underscore.

 For example, result, _score, footballTeam, and plan9 are all valid identifiers, whereas

result%, footballTeam$, and 9plan are not.

 NOTE: C# is a case-sensitive language: footballTeam and FootballTeam are two different

identifiers.

Identifying keywords

 The C# language reserves 77 identifiers for its own use, and we cannot reuse these

identifiers for our own purposes. These identifiers are called keywords, and each has a

particular meaning. Examples of keywords are class, namespace, and using. The

following is the list of keywords:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 9

 C# also uses the identifiers that follow. These identifiers are not reserved by C#, which

means that we can use these names as identifiers for our own methods, variables, and

classes, but we should avoid doing so if at all possible.

Using variables

 A variable is a storage location that holds a value. we can think of a variable as a box in

the computer’s memory that holds temporary information. We must give each variable in

a program an unambiguous name that uniquely identifies it in the context in which it is

used.

 We use a variable’s name to refer to the value it holds. For example, if we want to store

the value of the cost of an item in a store, we might create a variable simply called cost

and store the item’s cost in this variable. Later on, if we refer to the cost variable, the

value retrieved will be the item’s cost that we stored there earlier.

Naming variables

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 10

 we should adopt a naming convention for variables that helps us to avoid confusion

concerning the variables we have defined. The following list contains some general

recommendations

 Don’t start an identifier with an underscore. Although this is legal in C#, it can limit the

interoperability of our code with applications built by using other languages, such as

Microsoft Visual Basic.

 Don’t create identifiers that differ only by case. For example, do not create one variable

named myVariable and another named MyVariable for use at the same time, because it is

too easy to get them confused. Also, defining identifiers that differ only by case can limit

the ability to reuse classes in applications developed by using other languages that are not

case sensitive, such as Visual Basic.

 Start the name with a loourcase letter.

 In a multiword identifier, start the second and each subsequent word with an uppercase

letter. (This is called camelCase notation.)

 Don’t use Hungarian notation.

 For example, score, footballTeam, _score, and FootballTeam are all valid variable

names, but only the first two are recommended.

Declaring variables

 Variables hold values. C# has many different types of values that it can store and

process—integers, floating-point numbers, and strings of characters, to name three. When

we declare a variable, we must specify the type of data it will hold.

 we declare the type and name of a variable in a declaration statement. For example, the

statement that follows declares that the variable named age holds int (integer) values. As

always, we must terminate the statement with a semicolon.

 int age;

The variable type int is the name of one of the primitive C# types, integer, which is a whole

number.

 After we’ve declared our variable, we can assign it a value. The statement that follows

assigns age the value 42. Again, note that the semicolon is required.

 age = 42;

 The equal sign (=) is the assignment operator, which assigns the value on its right to the

variable on its left. After this assignment, we can use the age variable in our code to refer

to the value it holds. The next statement writes the value of the age variable (42) to the

console:

 Console.WriteLine(age);

Working with primitive data types

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 11

 C# has a number of built-in types called primitive data types. The following table lists the

most commonly used primitive data types in C# and the range of values that we can store

in each.

Unassigned local variables

 When we declare a variable, it contains a random value until we assign a value to it. This

behavior was a rich source of bugs in C and C++ programs that created a variable and

accidentally used it as a source of information before giving it a value.

 C# does not allow us to use an unassigned variable. we must assign a value to a variable

before we can use it; otherwise, our program will not compile. This requirement is called

the definite assignment rule.

 For example, the following statements generate the compile-time error message “Use of

unassigned local variable ‘age’” because the Console.WriteLine statement attempts to

display the value of an uninitialized variable:

 int age;

Console.WriteLine(age); // compile-time error

Using arithmetic operators

 C# supports the regular arithmetic operations we learned in our childhood: the plus sign

(+) for addition, the minus sign (–) for subtraction, the asterisk (*) for multiplication, and

the forward slash (/) for division. The symbols +, –, *, and / are called operators because

they “operate” on values to create new values.

 In the following example, the variable moneyPaidToConsultant ends up holding the

product of 750 (the daily rate) and 20 (the number of days the consultant was employed):

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 12

 long moneyPaidToConsultant;

 moneyPaidToConsultant = 750 * 20;

Note: The values on which an operator performs its function are called operands. In the

expression 750 * 20, the * is the operator, and 750 and 20 are the operands.

Operators and types

 Not all operators are applicable to all data types. The operators that we can use on a value

depend on the value’s type. For example, we can use all the arithmetic operators on

values of type char, int, long, float, double, or decimal.

 However, with the exception of the plus operator, +, we can’t use the arithmetic

operators on values of type string, and we cannot use any of them with values of type

bool. So, the following statement is not allowed, because the string type does not support

the minus operator (subtracting one string from another is meaningless):

 // compile-time error Console.WriteLine("Gillingham" - "Forest Green Rovers");

 However, we can use the + operator to concatenate string values. We need to be careful

because this can have unexpected results. For example, the following statement writes

“431” (not “44”) to the console:

 Console.WriteLine("43" + "1");

Note: The .NET Framework provides a method called Int32.Parse that we can use to convert a

string value to an integer if we need to perform arithmetic computations on values held as

strings.

 We should also be aware that the type of the result of an arithmetic operation depends on

the type of the operands used. For example, the value of the expression 5.0/2.0 is 2.5; the

type of both operands is double, so the type of the result is also double.

 However, the value of the expression 5/2 is 2. In this case, the type of both operands is

int, so the type of the result is also int. C# always rounds toward zero in circumstances

like this.

 The situation gets a little more complicated if we mix the types of the operands. For

example, the expression 5/2.0 consists of an int and a double.

 The C# compiler detects the mismatch and generates code that converts the int into a

double before performing the operation. The result of the operation is therefore a double

(2.5). However, although this works, it is considered poor practice to mix types in this

way.

 C# also supports one less-familiar arithmetic operator: the remainder, or modulus,

operator, which is represented by the percent sign (%). The result of x % y is the

remainder after dividing the value x by the value y. So, for example, 9 % 2 is 1 because 9

divided by 2 is 4, remainder 1.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 13

Note: if we divide zero by anything, the result is zero, but if we divide anything by zero the

result is infinity. The expression 0.0/0.0 results in a paradox—the value must be zero and

infinity at the same time. C# has another special value for this situation called NaN, which

stands for “not a number.” So if we evaluate 0.0/0.0, the result is NaN.

Controlling precedence

 Precedence governs the order in which an expression’s operators are evaluated. Consider

the following expression, which uses the + and * operators:

 2 + 3 * 4

 This expression is potentially ambiguous: do we perform the addition first or the

multiplication? The order of the operations matters because it changes the result:

 If we perform the addition first, followed by the multiplication, the result of the addition

(2 + 3) forms the left operand of the * operator, and the result of the whole expression is

5 * 4, which is 20.

 If we perform the multiplication first, followed by the addition, the result of the

multiplication (3 * 4) forms the right operand of the + operator, and the result of the

whole expression is 2 + 12, which is 14.

 In C#, the multiplicative operators (*, /, and %) have precedence over the additive

operators (+ and –), so in expressions such as 2 + 3 * 4, the multiplication is performed

first, followed by the addition. The ansour to 2 + 3 * 4 is therefore 14.

 We can use parentheses to override precedence and force operands to bind to operators in

a different way. For example, in the following expression, the parentheses force the 2 and

the 3 to bind to the + operator (making 5), and the result of this addition forms the left

operand of the * operator to produce the value 20:

 (2 + 3) * 4

Using associativity to evaluate expressions

 What happens when an expression contains different operators that have the same

precedence? This is where associativity becomes important.

 Associativity is the direction (left or right) in which the operands of an operator are

evaluated. Consider the following expression that uses the / and * operators:

 4 / 2 * 6

 At first glance, this expression is potentially ambiguous. Do we perform the division first

or the multiplication? The precedence of both operators is the same (they are both

multiplicative), but the order in which the operators in the expression are applied is

important because we can get two different results:

 If we perform the division first, the result of the division (4/2) forms the left operand of

the * operator, and the result of the whole expression is (4/2) * 6, or 12.

 If we perform the multiplication first, the result of the multiplication (2 * 6) forms the

right operand of the / operator, and the result of the whole expression is 4/(2 * 6), or 4/12.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 14

 In this case, the associativity of the operators determines how the expression is evaluated.

The * and / operators are both left-associative, which means that the operands are

evaluated from left to right. In this case, 4/2 will be evaluated before multiplying by 6,

giving the result 12.

Associativity and the assignment operator

 In C#, the equal sign (=) is an operator. All operators return a value based on their

operands. The assignment operator = is no different. It takes two operands: the operand

on the right side is evaluated and then stored in the operand on the left side.

 The value of the assignment operator is the value that was assigned to the left operand.

For example, in the following assignment statement, the value returned by the assignment

operator is 10, which is also the value assigned to the variable myInt:

 int myInt;

 myInt = 10; // value of assignment expression is 10

 Well, because the assignment operator returns a value, we can use this same value with

another occurrence of the assignment statement, like this:

 int myInt;int myInt2;myInt2 = myInt = 10;

 The value assigned to the variable myInt2 is the value that was assigned to myInt. The

assignment statement assigns the same value to both variables. This technique is useful if

we want to initialize several variables to the same value. It makes it very clear to anyone

reading our code that all the variables must have the same value:

 myInt5 = myInt4 = myInt3 = myInt2 = myInt = 10;

Incrementing and decrementing variables

 If we want to add 1 to a variable, we can use the + operator, as demonstrated here:

 count = count + 1;

 However, adding 1 to a variable is so common that C# provides its own operator just for

this purpose: the ++ operator. To increment the variable count by 1, we can write the

following statement:

 count++;

 Similarly, C# provides the -- operator that we can use to subtract 1 from a variable, like

this:

 count--;

 The ++ and -- operators are unary operators, meaning that they take only a single

operand. They share the same precedence and are both left-associative.

Prefix and postfix

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 15

 The increment (++) and decrement (--) operators are unusual in that we can place them

either before or after the variable.

 Placing the operator symbol before the variable is called the prefix form of the operator,

and using the operator symbol after the variable is called the postfix form. Here are

examples:

count++; // postfix increment

++count; // prefix increment

count--; // postfix decrement

--count; // prefix decrement

 The value returned by count++ is the value of count before the increment takes place,

whereas the value returned by ++count is the value of count after the increment takes

place. Here is an example:

 int x;

 x = 42;

 Console.WriteLine(x++); // x is now 43, 42 written out

 x = 42;Console.WriteLine(++x); // x is now 43, 43 written out

Declaring implicitly typed local variables
 We can also ask the C# compiler to infer the type of a variable from an expression and

use this type when declaring the variable by using the var keyword in place of the type,

as demonstrated here:

 var myVariable = 99;

 var myOtherVariable = "Hello";

 The variables myVariable and myOtherVariable are referred to as implicitly typed

variables. The var keyword causes the compiler to deduce the type of the variables from

the types of the expressions used to initialize them. In these examples, myVariable is an

int, and myOtherVariable is a string.

 However, it is important for we to understand that this is a convenience for declaring

variables only, and that after a variable has been declared we can assign only values of

the inferred type to it—we cannot assign float, double, or string values to myVariable at a

later point in our program, for example.

 We should also understand that we can use the var keyword only when we supply an

expression to initialize a variable. The following declaration is illegal and causes a

compilation error:

 var yetAnotherVariable; // Error - compiler cannot infer type.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 16

MODULE 1[CHAPTER 3]

Writing methods and applying scope

Creating methods
 A method is a named sequence of statements. A method has a name and a body. The

method name should be a meaningful identifier that indicates the overall purpose of the

method. The method body contains the actual statements to be run when the method is

called.

 Additionally, methods can be given some data for processing and can return information,

which is usually the result of the processing. Methods are a fundamental and poourful

mechanism.

Declaring a method

The syntax for declaring a C# method is as follows:

returnType methodName (parameterList)

{

// method body statements go here

 }

The following is a description of the elements that make up a declaration:

 The returnType is the name of a type and specifies the kind of information the method

returns as a result of its processing. This can be any type, such as int or string. If we’re

writing a method that does not return a value, we must use the keyword void in place of

the return type.

 The methodName is the name used to call the method. Method names follow the same

identifier rules as variable names. For example, addValues is a valid method name,

whereas add$Values is not. For now, we should follow the camelCase convention for

method names; for example, displayCustomer.

 The parameterList is optional and describes the types and names of the information that

we can pass into the method for it to process. We write the parameters between opening

and closing parentheses, (), as though we’re declaring variables, with the name of the

type followed by the name of the parameter. If the method we’re writing has two or more

parameters, we must separate them with commas.

 The method body statements are the lines of code that are run when the method is called.

They are enclosed between opening and closing braces, { }.

NOTE:we should note that C# does not support global methods. We must write all our methods

inside a class; otherwise, our code will not compile

 Here’s the definition of a method called addValues that returns an int result and has two

int parameters, leftHandSide and rightHandSide:

 int addValues(int leftHandSide, int rightHandSide)

 {

 // ...

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 17

 // method body statements go here

 // ...

 }

NOTE: We must explicitly specify the types of any parameters and the return type of a method.

We cannot use the var keyword.

 Here’s the definition of a method called showResult that does not return a value and has a

single int parameter, called ansour:

void showResult(int ansour)

{

 // ...

}

Notice the use of the keyword void to indicate that the method does not return anything.

Returning data from a method

 If we want a method to return information (that is, its return type is not void), we must

include a return statement at the end of the processing in the method body.

 A return statement consists of the keyword return followed by an expression that

specifies the returned value, and a semicolon. The type of the expression must be the

same as the type specified by the method declaration.

 For example, if a method returns an int, the return statement must return an int;

otherwise, our program will not compile. Here is an example of a method with a return

statement:

int addValues(int leftHandSide, int rightHandSide)

{

// ...

return leftHandSide + rightHandSide;

}

 The return statement is usually positioned at the end of the method because it causes the

method to finish, and control returns to the statement that called the method, as described

later in this chapter. Any statements that occur after the return statement are not executed

(although the compiler warns we about this problem if we place statements after the

return statement).

 If we don’t want our method to return information (that is, its return type is void), we can

use a variation of the return statement to cause an immediate exit from the method. We

write the keyword return and follow it immediately by a semicolon. For example:

 void showResult(int ansour)

 {

 // display the ansour

 ...

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 18

 return;

 }

Calling methods

 We call a method by name to ask it to perform its task. If the method requires

information (as specified by its parameters), we must supply the information requested.

If the method returns information (as specified by its return type), we should arrange to

capture this information somehow.

Specifying the method call syntax

The syntax of a C# method call is as follows:

 result = methodName (argumentList)

The following is a description of the elements that make up a method call:

 The methodName must exactly match the name of the method we’re calling. Remember,

C# is a case-sensitive language.

 The result = clause is optional. If specified, the variable identified by result contains the

value returned by the method. If the method is void (that is, it does not return a value), we

must omit the result = clause of the statement. If we don’t specify the result = clause and

the method does return a value, the method runs but the return value is discarded.

 The argumentList supplies the information that the method accepts. We must supply an

argument for each parameter, and the value of each argument must be compatible with

the type of its corresponding parameter. If the method we’re calling has two or more

parameters, we must separate the arguments with commas.

 To clarify these points, take a look at the addValues method again:

 int addValues(int leftHandSide, int rightHandSide)

 {

 // ...

 }

 The addValues method has two int parameters, so we must call it with two comma-

separated int arguments, such as this:

 addValues(39, 3); // okay

 We can also replace the literal values 39 and 3 with the names of int variables. The values

in those variables are then passed to the method as its arguments, like this:

 int arg1 = 99;

 int arg2 = 1;
 addValues(arg1, arg2);

 If we try to call addValues in some other way, we will probably not succeed for the

reasons described in the following examples:

 addValues; // compile-time error, no parentheses

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 19

 addValues(); // compile-time error, not enough arguments

 addValues(39); // compile-time error, not enough arguments

 addValues(“39”, “3”); // compile-time error, wrong types for arguments

 The addValues method returns an int value. We can use this int value wherever an int

value can be used. Consider these examples:

 int result = addValues(39, 3); // on right-hand side of an assignment

 showResult(addValues(39, 3)); // as argument to another method

Applying scope

 We create variables to hold values. We can create variables at various points in our

applications. For example, the calculateClick method in the Methods project creates an

int variable called calculatedValue and assigns it an initial value of zero, like this:

private void calculateClick(object sender, RoutedEventArgs e)
{
 int calculatedValue = 0;
 ...
}

 When a variable can be accessed at a particular location in a program, the variable is said

to be in scope at that location. The calculatedValue variable has method scope; it can be

accessed throughout the calculateClick method but not outside of that method. We can

also define variables with different scope; for example, we can define a variable outside

of a method but within a class, and this variable can be accessed by any method within

that class. Such a variable is said to have class scope.

Defining local scope

 The opening and closing braces that form the body of a method define the scope of the

method. Any variables we declare inside the body of a method are scoped to that method;

they disappear when the method ends and can be accessed only by code running in that

method. These variables are called local variables because they are local to the method in

which they are declared; they are not in scope in any other method.

 The scope of local variables means that we cannot use them to share information between

methods. Consider this example:

class Example

{

void firstMethod()

{

 int myVar;

 ...

}

void anotherMethod()

{ myVar = 42; // error - variable not in scope ... }

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 20

}

 This code fails to compile because anotherMethod is trying to use the variable

myVar, which is not in scope. The variable myVar is available only to statements

in firstMethod that occur after the line of code that declares myVar.

Defining class scope

 The opening and closing braces that form the body of a class define the scope of

that class. Any variables we declare within the body of a class (but not within a

method) are scoped to that class. The proper C# term for a variable defined by a

class is field.

Here is an example:

class Example

{

void firstMethod()

{

myField = 42; // ok ...

}

void anotherMethod()

{

 myField++; // ok ...

 }

 int myField = 0;

}

 The variable myField is defined in the class but outside the methods firstMethod

and anotherMethod. Therefore, myField has class scope and is available for use

by all methods in that class.

Overloading methods

 If two identifiers have the same name and are declared in the same scope, they are

said to be overloaded. However, there is a way that we can overload an identifier

for a method, and that way is both useful and important.

 Consider the WriteLine method of the Console class, where each version of the

WriteLine method takes a different set of parameters; one version takes no

parameters and simply outputs a blank line, another version takes a bool

parameter, outputs it as a string, and so on. At compile time, the compiler looks at

the types of the arguments we are passing in and then arranges for our application

to call the version of the method that has a matching set of parameters. Here is an

example:

static void Main()

{

 Console.WriteLine(“The ansour is “);

 Console.WriteLine(42);

}

 Overloading is primarily useful when we need to perform the same operation on

different data types or varying groups of information. We can overload a method

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 21

when they have the same name but a different number of parameters, or when the

types of the parameters differ. When we call a method, we supply a comma-

separated list of arguments and type of the arguments is used by the compiler to

select one of the overloaded methods. We can’t declare two methods with the

same name that differ only in their return type.

Using optional parameters and named arguments

 Optional parameters are also useful in other situations. They provide a compact

and simple solution when it is not possible to use overloading because the types of

the parameters do not vary sufficiently to enable the compiler to distinguish

between implementations.

For example, consider the following method:

 public void DoWorkWithData(int iData, float fData, int moreData)

{

 ...

}

 public void DoWorkWithData(int intData, float floatData)

 {

 ...

 }

 If we write a statement that calls the DoWorkWithData method, we can provide

either two or three parameters of the appropriate types, and the compiler uses the

type information to determine which overload to call:

int arg1 = 99; float arg2 = 100.0F; int arg3 = 101;

DoWorkWithData(arg1, arg2, arg3); // Call overload with three parameters

DoWorkWithData(arg1, arg2); // Call overload with two parameters

 Consider the following constructors

 public void DoWorkWithData(int iData)

 {

 ...

 }

 public void DoWorkWithData(int moreData)

 {

 ...

 }

 The issue here is that to the compiler, these two overloads appear identical. Our

code will fail to compile and will instead generate the error “Type ‘typename’

already defines a member called ‘DoWorkWithData’ with the same parameter

types.” To understand why this is so, if this code oure legal, consider the

following statements:

int arg1 = 99; int arg3 = 101;

DoWorkWithData(arg1);

 DoWorkWithData(arg3);

 Which overload or overloads would the calls to DoWorkWithData invoke? Using

optional parameters and named arguments can help to solve this problem.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 22

Defining optional parameters

 We specify that a parameter is optional when we define a method by providing a

default value for the parameter. We indicate a default value by using the

assignment operator. In the optMethod method shown next, the first parameter is

mandatory because it does not specify a default value, but the second and third

parameters are optional:

void optMethod(int first, double second = 0.0, string third = “Hello”)

{

 ...

 }

optMethod(99, 123.45, “World”); // Arguments provided for all three parameters

optMethod(100, 54.321); // Arguments provided for first two parameters only

 We must specify all mandatory parameters before any optional parameters. The

first call to the optMethod method provides values for all three parameters. The

second call specifies only two arguments, and these values are applied to the first

and second parameters. The third parameter receives the default value of “Hello”

when the method runs.

Passing named arguments

 The C# allow us to specify parameters by name. This feature lets we pass the

arguments in a different sequence. To pass an argument as a named parameter, we

specify the name of the parameter, followed by a colon and the value to use. The

following examples perform the same function as those shown in the previous

section, except that the parameters are specified by name:

optMethod(first : 99, second : 123.45, third : “World”);

 optMethod(first : 100, second : 54.321);

 Named arguments give we the ability to pass arguments in any order. We can

rewrite the code that calls the optMethod method, such as shown here:

optMethod(third : “World”, second : 123.45, first : 99);

optMethod(second : 54.321, first : 100);

optMethod(first : 99, third : “World”); // omit arguments.

 Additionally, we can mix positional and named arguments. However, if we use

this technique, we must specify all the positional arguments before the first named

argument.

optMethod(99, third : “World”); // First argument is positional

Resolving ambiguities with optional parameters and named arguments

 Using optional parameters and named arguments can result in some possible

ambiguities in our code. We need to understand how the compiler resolves these

ambiguities; otherwise, we might find our applications behaving in unexpected

ways. Suppose that we define the optMethod method as an overloaded method, as

shown in the following example:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 23

void optMethod(int first, double second = 0.0, string third = “Hello”)

{

 ...

 }

void optMethod(int first, double second = 1.0, string third = “Goodbye”, int

fourth = 100)

{

 ...

 }

 The following example, arise problem if we attempt to call the optMethod method

and omit some of the arguments corresponding to one or more of the optional

parameters:

optMethod(1, 2.5, “World”);

optMethod(1, fourth : 101);

 In this code, the call to optMethod omits arguments for the second and third

parameters, but it specifies the fourth parameter by name. Only one version of

optMethod matches this call, so this is not a problem. This next one will get we

thinking, though:

optMethod(1, 2.5);

optMethod(1, third : “World”);

optMethod(1);optMethod(second : 2.5, first : 1);

 This is an unresolvable ambiguity, and the compiler does not let we compile the

application.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 24

MODULE 1[CHAPTER 4]

Using decision statements

Using Boolean operators

 A Boolean operator is an operator that performs a calculation whose result is

either true or false. C# has several very useful Boolean operators, the simplest of

which is the NOT operator, represented by the exclamation point (!). The !

operator negates a Boolean value, yielding the opposite of that value. In the

preceding example, if the value of the variable areOuready is true, the value of

the expression !areOuready is false.

Understanding equality and relational operators

 Two Boolean operators that we will frequently use are equality (==) and

inequality (!=). These are binary operators with which we can determine whether

one value is the same as another value of the same type, yielding a Boolean result.

The following table summarizes how these operators work, using an int variable

called age as an example.

 Closely related to == and != are the relational operators. We use these operators

to find out whether a value is less than or greater than another value of the same

type. The following table shows how to use these operators.

Understanding conditional logical operators

 C# also provides two other binary Boolean operators: the logical AND operator,

which is represented by the && symbol, and the logical OR operator, which is

represented by the || symbol. Collectively, these are known as the conditional

logical operators.

 Their purpose is to combine two Boolean expressions or values into a single

Boolean result. These operators are similar to the equality and relational operators

in that the value of the expressions in which they appear is either true or false, but

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 25

they differ in that the values on which they operate must also be either true or

false.

 The outcome of the && operator is true if and only if both of the Boolean

expressions it’s evaluating are true. For example, the following statement assigns

the value true to validPercentage if and only if the value of percent is greater than

or equal to 0 and the value of percent is less than or equal to 100:

 bool validPercentage;validPercentage = (percent >= 0) && (percent <= 100);

 The outcome of the || operator is true if either of the Boolean expressions it

evaluates is true. We use the || operator to determine whether any one of a

combination of Boolean expressions is true. For example, the following statement

assigns the value true to invalidPercentage if the value of percent is less than 0 or

the value of percent is greater than 100:

 bool invalidPercentage;invalidPercentage = (percent < 0) || (percent > 100);

Short-circuiting

 The && and || operators both exhibit a feature called short-circuiting. Sometimes,

it is not necessary to evaluate both operands when ascertaining the result of a

conditional logical expression.

 For example, if the left operand of the && operator evaluates to false, the result

of the entire expression must be false, regardless of the value of the right operand.

 Similarly, if the value of the left operand of the || operator evaluates to true, the

result of the entire expression must be true, irrespective of the value of the right

operand. In these cases, the && and || operators bypass the evaluation of the right

operand. Here are some examples:

(percent >= 0) && (percent <= 100)

 In this expression, if the value of percent is less than 0, the Boolean expression on

the left side of && evaluates to false. This value means that the result of the entire

expression must be false, and the Boolean expression to the right of the &&

operator is not evaluated.

(percent < 0) || (percent > 100)

 In this expression, if the value of percent is less than 0, the Boolean expression on

the left side of || evaluates to true. This value means that the result of the entire

expression must be true and the Boolean expression to the right of the || operator

is not evaluated.

Operator precedence and associativity table

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 26

Using if statements to make decisions

Understanding if statement syntax

The syntax of an if statement is as follows (if and else are C# keywords):

if (booleanExpression)

statement-1;

else

statement-2;

 If booleanExpression evaluates to true, statement-1 runs; otherwise, statement-2

runs. The else keyword and the subsequent statement-2 are optional. If there is no

else clause and the booleanExpression is false, execution continues with whatever

code follows the if statement. Also, notice that the Boolean expression must be

enclosed in parentheses; otherwise, the code will not compile.

For example, here’s an if statement that increments a variable representing the second hand of a

stopwatch.

int a=15,b=15;

...

if (a ==b)

console.writeln(“equal”);

else

 console.writeln(“not equal”);

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 27

NOTE: Boolean expressions only: The expression in an if statement must be enclosed in

parentheses. Additionally, the expression must be a Boolean expression. Sometimes, we’ll want

to perform more than one statement when a Boolean expression is true. We could group the

statements inside a new method and then call the new method, but a simpler solution is to group

the statements inside a block. A block is simply a sequence of statements grouped between an

opening brace and a closing brace.

 In the following example, two statements that reset the seconds variable to 0 and

increment the minutes variable are grouped inside a block, and the entire block

executes if the value of seconds is equal to 59:

 int seconds = 0;

 int minutes = 0;...

 if (seconds == 59)

 {

 seconds = 0;

 minutes++;

 }

 Else

 {

 seconds++;

 }

 A block also starts a new scope. We can define variables inside a block, but they

will disappear at the end of the block. The following code fragment illustrates this

point:

 if (...)

 {

 int myVar = 0;

 // myVar can be used here

 ...

 } // myVar disappears here

else

 {

 // myVar cannot be used here ...

 }

 // myVar cannot be used here

Cascading if statements

 We can nest if statements inside other if statements. In this way, we can chain

together a sequence of Boolean expressions, which are tested one after the other

until one of them evaluates to true.

 In the following example, if the value of day is 0, the first test evaluates to true

and dayName is assigned the string “Sunday”. If the value of day is not 0, the first

test fails and control passes to the else clause, which runs the second if statement

and compares the value of day with 1.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 28

 The second if statement executes only if the first test is false. Similarly, the third if

statement executes only if the first and second tests are false.

if (day == 0)

{

dayName = "Sunday";

}

else if (day == 1)

{

dayName = "Monday";

}

…..

else if (day == 6)

{

DayName = "Saturday";

}

else

{

dayName = "unknown";

}

Using switch statements

 Sometimes, when we write a cascading if statement, each of the if statements look similar

because they all evaluate an identical expression. The only difference is that each if

compares the result of the expression with a different value. For example, consider the

following block of code that uses an if statement to examine the value in the day variable

and work out which day of the week it is:

 if (day == 0)

 {

 dayName = "Sunday";

 }

 else if (day == 1)

 {

 dayName = "Monday";

 }

 ….

 else

 {

 dayName = "Unknown";

 }

In these situations, often we can rewrite the cascading if statement as a switch statement to make

our program more efficient and more readable.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 29

Understanding switch statement syntax

The syntax of a switch statement is as follows (switch, case, and default are keywords):

 switch (controllingExpression)

 {

 case constantExpression :

 statements

 break;

 case constantExpression :

 statements

 break;

 ...

 default :

 statements

 break;

 }

 The controllingExpression, which must be enclosed in parentheses, is evaluated once.

Control then jumps to the block of code identified by the constantExpression, whose

value is equal to the result of the controllingExpression. (The constantExpression

identifier is also called a case label.)

 Execution runs as far as the break statement, at which point the switch statement finishes

and the program continues at the first statement that follows the closing brace of the

switch statement. If none of the constantExpression values is equal to the value of the

controllingExpression, the statements below the optional default label run.

 Following the switch statement rules

1. The switch statement is very useful, but unfortunately, we can’t always use it when we

might like to. Any switch statement we write must adhere to the following rules:

2. We can use switch only on certain data types, such as int, char, or string. With any other

types (including float and double), we must use an if statement.

3. The case labels must be constant expressions, such as 42 if the switch data type is an int,

‘4’ if the switch data type is a char, or “42” if the switch data type is a string. If we need

to calculate our case label values at run time, we must use an if statement.

4. The case labels must be unique expressions. In other words, two case labels cannot have

the same value.

5. We can specify that we want to run the same statements for more than one value by

providing a list of case labels and no intervening statements, in which case the code for

the final label in the list is executed for all cases in that list.

 So, we can rewrite the previous cascading if statement as the following switch statement:

switch (day)

{

case 0 : dayName = "Sunday";

break;

case 1 : dayName = "Monday";

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 30

break;

case 2 : dayName = "Tuesday";

break;

...

default : dayName = "Unknown";

break;

}

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 31

MODULE 1[CHAPTER 5]

Using compound assignment and iteration statements

Using compound assignment operators
 When we write iteration statements, we usually need to control the number of

iterations that we perform. We can achieve this by using a variable, updating its

value as each iteration is performed, and stopping the process when the variable

reaches a particular value.

 To help simplify this process, we’ll start by learning about the special assignment

operators that we should use to update the value of a variable in these

circumstances.

For example, the following statement adds 42 to ansour. After this statement runs, the value of

ansour is 42 more than it was before:

 ansour = ansour + 42;

Following operators are collectively known as the compound assignment operators

 The += operator also works on strings; it appends one string to the end of another. For

example, the following code displays “Hello John” on the console:

 string str1= "John";

 string str2 = "Hello ";

 str1 += str2;

 Console.WriteLine(str1);

NOTE:We cannot use any of the other compound assignment operators on strings.

Writing while statements

 We use a while statement to run a statement repeatedly for as long as some condition is

true. The syntax of a while statement is as follows:

Initialization

while (Boolean expression)

{

 Statements

 update control variable

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 32

}

 The Boolean expression is evaluated, and if it is true, the statement runs and then the

Boolean expression is evaluated again. If the expression is still true, the statement is

repeated until the Boolean expression evaluates to false, at which point the while

statement exits. Execution then continues with the first statement that follows the while

statement.

1. The expression must be a Boolean expression.

2. The Boolean expression must be written within parentheses.

3. If the Boolean expression evaluates to false when first evaluated, the statement does

not run.

4. If we want to perform two or more statements under the control of a while statement,

we must use braces to group those statements in a block.

 Example: while statement that writes the values 0 through 9 to the console.

int i = 0;

while (i < 10)

{

 Console.WriteLine(i);

 i++;

}

Writing for Statements

 The for statement in C# provides a more formal version of this kind of construct by

combining the initialization, Boolean expression, and code that updates the control

variable. Here is the syntax of a for statement:

for (initialization; Boolean expression; update control variable)

 statement

 The statement that forms the body of the for construct can be a single line of code or a

code block enclosed in braces.

 Example : Displays the integers from 0 through 9 as the following for loop:

for (int i = 0; i < 10; i++)

{

 Console.WriteLine(i);

}

 Notice that the initialization occurs only once, that the statement in the body of the loop

always executes before the update occurs, and that the update occurs before the Boolean

expression reevaluates.

 We can omit any of the three parts of a for statements.

for (int i = 0; ;i++)

{

 Console.WriteLine("somebody stop me!");

}

 If we omit the initialization and update parts, we have a strangely spelled while loop:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 33

int i = 0;
for (; i < 10;)

{

 Console.WriteLine(i);

 i++;
}

 We can also provide multiple initializations and multiple updates in a forloop

for (int i = 0, j = 10; i <= j; i++, j--)

{
 ...

}

Understanding for statement scope

 We can declare a variable in the initialization part of a for statement. That variable is scoped to
the body of the for statement and disappears when the for statement finishes. This rule has two

important consequences. First, we cannot use that variable after the for statement has ended

because it’s no longer in scope. Here’s an example:

for (int i = 0; i < 10; i++)
{

...

}
Console.WriteLine(i); // compile-time error

 Second, we can write two or more for statements that reuse the same variable name because each

variable is in a different scope, as shown in the following code:

for (int i = 0; i < 10; i++)

{ ...}

for (int i = 0; i < 20; i += 2) // okay

{ ...}

Writing do statements

 The while and for statements both test their Boolean expression at the beginning of the loop. This

means that if the expression evaluates to false on the first test, the body of the loop does not run—
not even once. The do statement is different: its Boolean expression is evaluated after each

iteration, so the body always executes at least once.

 The syntax of the do statement is as follows (don’t forget the final semicolon):

Do
 Statement

while (booleanExpression);

 We must use a statement block if the body of the loop comprises more than one statement (the

compiler will report a syntax error if we don’t). Here’s a version of the example that writes the

values 0 through 9 to the console, this time constructed by using a do statement:

int i = 0;

do

{
Console.WriteLine(i);

 i++;

}while (i < 10);

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 34

MODULE 1[CHAPTER 6]

Managing errors and exceptions

Coping with errors

 Errors can occur at almost any stage when a program runs, and many of them might not

actually be the fault of our own application, so how do we detect them and attempt to

recover?

 A typical approach adopted by older systems such as UNIX involved arranging for the

operating system to set a special global variable whenever a method failed. Then, after

each call to a method, we checked the global variable to see whether the method

succeeded. C# and most other modern object-oriented languages don’t handle errors in

this manner;. Instead, they use exceptions.

Trying code and catching exceptions

 C# makes it easy to separate the error-handling code from the code that implements the

primary logic of a program by using exceptions and exception handlers. To write

exception-aware programs, we need to do two things:

 Write our code within a try block (try is a C# keyword). When the code runs, it attempts

to execute all the statements in the try block, and if none of the statements generates an

exception, they all run, one after the other, to completion.

 However, if an error condition occurs, execution jumps out of the try block and into

another piece of code designed to catch and handle the exception—a catch handler.

 Write one or more catch handlers (catch is another C# keyword) immediately after the try

block to handle any possible error conditions. A catch handler is intended to capture and

handle a specific type of exception, and we can have multiple catch handlers after a try

block, each one designed to trap and process a specific exception;

 we can provide different handlers for the different errors that could arise in the try block.

If any one of the statements within the try block causes an error, the runtime throws an

exception. The runtime then examines the catch handlers after the try block and transfers

control directly to the first matching handler.

 Here’s an example of code in a try block that attempts to convert strings that a user has

typed in some text boxes on a form to integer values, call a method to calculate a value,

and write the result to another text box.

 Converting a string to an integer requires that the string contain a valid set of digits and

not some arbitrary sequence of characters. If the string contains invalid characters, the

int.Parse method throws a FormatException, and execution transfers to the

corresponding catch handler. When the catch handler finishes, the program continues

with the first statement that follows the handler. Note that if there is no handler that

corresponds to the exception, the exception is said to be unhandled

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 35

 try

 {

 int leftHandSide = int.Parse(lhsOperand.Text);

 int rightHandSide = int.Parse(rhsOperand.Text);

 int ansour = doCalculation(leftHandSide, rightHandSide);

 result.Text = ansour.ToString();

 }

 catch (FormatException fEx)

 {

 // Handle the exception

 ...

 }

 A catch handler employs syntax similar to that used by a method parameter to

specify the exception to be caught. In the preceding example, when a

FormatException is thrown, the fEx variable is populated with an object containing

the details of the exception.

 The FormatException type has a number of properties that we can examine to

determine the exact cause of the exception. Many of these properties are common to

all exceptions..

Unhandled Exceptions

 What happens if a try block throws an exception and there is no corresponding catch

handler? [refer previous example] it is possible that the lhsOperand text box

contains the string representation of a valid integer but the integer it represents is

outside the range of valid integers supported by C# (for example, “2147483648”).

 In this case, the int.Parse statement throws an OverflowException, which will not be

caught by the FormatException catch handler. If this occurs and the try block is part

of a method, the method immediately exits and execution returns to the calling

method.

 If the calling method uses a try block, the runtime attempts to locate a matching

catch handler for this try block and execute it. If the calling method does not use a

try block or there is no matching catch handler, the calling method immediately

exits and execution returns to its caller, where the process is repeated.

 If a matching catch handler is eventually found, the handler runs and execution

continues with the first statement that follows the catch handler in the catching

method.

Using multiple catch handlers

To represent different kinds of failures. we can supply multiple catch handlers, one after the

other, such as in the following:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 36

Try

{

int leftHandSide = int.Parse(lhsOperand.Text);

 int rightHandSide = int.Parse(rhsOperand.Text);

 int ansour = doCalculation(leftHandSide, rightHandSide);

 result.Text = ansour.ToString();

}

catch (FormatException fEx)

{ //...}

catch (OverflowException oEx)

{ //...}

 If the code in the try block throws a FormatException exception, the statements in the

catch block for the FormatException exception run. If the code throws an

OverflowException exception, the catch block for the OverflowException exception runs.

Catching multiple exceptions

The exception-catching mechanism provided by C# and the Microsoft .NET Framework is

quite comprehensive. The .NET Framework defines many types of exceptions, and any

programs we write can throw most of them. It is highly unlikely that we will want to write

catch handlers for every possible exception that our code can throw—remember that our

application must be able to handle exceptions that we might not have even considered when

we wrote it! So, how do we ensure that our programs catch and handle all possible

exceptions?

The ansour to this question lies in the way the different exceptions are related to one

another. Exceptions are organized into families called inheritance hierarchies. (We will

learn about inheritance in Chapter 12, “Working with inheritance.”) FormatException and

OverflowException both belong to a family called SystemException, as do a number of other

exceptions. SystemException is itself a member of a wider family simply called Exception,

and this is the great-granddaddy of all exceptions. If we catch Exception, the handler traps

every possible exception that can occur.

Note The Exception family includes a wide variety of exceptions, many of which are

intend-ed for use by various parts of the .NET Framework. Some of these exceptions are

somewhat esoteric, but it is still useful to understand how to catch them.

The next example shows how to catch all possible exceptions:

try{ int leftHandSide = int.Parse(lhsOperand.Text); int rightHandSide =

int.Parse(rhsOperand.Text); int ansour = doCalculation(leftHandSide, rightHandSide);

result.Text = ansour.ToString();}catch (Exception ex) // this is a general catch handler{ //...}

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 37

Tip If we want to catch Exception, we can actually omit its name from the catch handler

because it is the default exception:catch { // ... }However, this is not recommended. The

exception object passed in to the catch handler can contain useful information concerning

the exception, which is not easily accessible when using this version of the catch

construct.

There is one final question we should be asking at this point: What happens if the same

exception matches multiple catch handlers at the end of a try block? If we catch

FormatException and Exception in two different handlers, which one will run? (Or, will

both execute?)

When an exception occurs, the runtime uses the first handler it finds that matches the

exception, and the others are ignored. This means that if we place a handler for Exception

before a handler for FormatException, the FormatException handler will never run.

Therefore, we should place more specific catch handlers above a general catch handler after

a try block. If none of the specific catch handlers matches the exception, the general catch

handler will.

In the following exercises, we will see what happens when an application throws an unhandled

exception, and then we will write a try block and catch and handle an exception.

Using checked and unchecked integer arithmetic

Chapter 2 discusses how to use binary arithmetic operators such as + and * on primitive

data types such as int and double. It also instructs that the primitive data types have a fixed

size. For example, a C# int is 32 bits. Because int has a fixed size, we know exactly the

range of value that it can hold: it is –2147483648 to 2147483647.

Tip If we want to refer to the minimum or maximum value of int in code, we can use the

int.MinValue or int.MaxValue property.

The fixed size of the int type creates a problem. For example, what happens if we add 1 to an int

whose value is currently 2147483647? The ansour is that it depends on how the application is

compiled. By default, the C# compiler generates code that allows the calculation to overflow

silently and we get the wrong ansour. (In fact, the calculation wraps around to the largest

negative integer value, and the result generated is –2147483648.) The reason for this behavior is

performance: integer

arithmetic is a common operation in almost every program, and adding the overhead of

overflow checking to each integer expression could lead to very poor performance. In many

cases, the risk is acceptable because we know (or hope!) that our int values won’t reach

their limits. If we don’t like this approach, we can turn on overflow checking.

Tip We can turn on and off overflow checking in Visual Studio 2013 by setting the

project properties. In Solution Explorer, click OurProject (where OurProject is the actual

name of the project). On the Project menu, click OurProject Properties. In the project

properties dialog box, click the Build tab. Click the Advanced button in the loour-right

corner of the page. In the Advanced Build Settings dialog box, select or clear the Check

for Arithmetic Overflow/Underflow check box.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 38

Regardless of how we compile an application, we can use the checked and unchecked

keywords to turn on and off integer arithmetic overflow checking selectively in parts of an

application that we think need it. These keywords override the compiler option specified for

the project.

Writing checked statements

A checked statement is a block preceded by the checked keyword. All integer arithmetic in

a checked statement always throws an OverflowException if an integer calculation in the

block overflows, as shown in this example:

int number = int.MaxValue;checked{ int willThrow = number++; Console.WriteLine(“this

won’t be reached”);}

Important Only integer arithmetic directly inside the checked block is subject to

overflow checking. For example, if one of the checked statements is a method call,

checking does not apply to code that runs in the method that is called.

We can also use the unchecked keyword to create an unchecked block statement. All integer

arithmetic in an unchecked block is not checked and never throws an OverflowException. For

example:

Throwing exceptions

Suppose that we are implementing a method called monthName that accepts a single int

argument and returns the name of the corresponding month. For example, monthName(1)

returns “January”, monthName(2) returns “February”, and so on. The question is, what

should the method return if the integer argument is less than 1 or greater than 12? The best

ansour is that the method shouldn’t return anything at all—it should throw an exception.

The .NET Framework class libraries contain lots of exception classes specifically designed

for situations such as this. Most of the time, we will find that one of these classes describes

our exceptional condition. (If not, we can easily create our own exception class, but we need

to know a bit more about the C# language before we can do that.) In this case, the existing

.NET Framework ArgumentOutOfRangeException class is just right. We can throw an

exception by using the throw statement, as shown in the following example:

public static string monthName(int month){ switch (month) { case 1 : return “January”;

case 2 : return “February”; ... case 12 : return “December”; default : throw new

ArgumentOutOfRangeException(“Bad month”); }}

The throw statement needs an exception object to throw. This object contains the details

of the exception, including any error messages. This example uses an expression that

creates a new ArgumentOutOfRangeException object. The object is initialized with a string

that populates its Message property by using a constructor. Constructors are covered in

detail in Chapter 7, “Creating and managing classes and objects.”

In the following exercises, we will modify the MathsOperators project to throw an

exception if the user attempts to perform a calculation without specifying an operator.

Note This exercise is a little contrived, as any good application design would provide a de-fault

operator, but this application is intended to illustrate a point.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 39

Using a finally block

It is important to remember that when an exception is thrown, it changes the flow of

execution through the program. This means that we can’t guarantee a statement will always

run when the previous statement finishes because the previous statement might throw an

exception. Remember that in this case, after the catch handler has run, the flow of control

resumes at the next statement in the block holding this handler and not at the statement

immediately following the code that raised the exception.

Look at the example that follows, which is adapted from the code in Chapter 5, “Using

compound assignment and iteration statements.” It’s very easy to assume that the call to

reader.Dispose will always occur when the while loop completes (if we are using Windows

7 or Windows 8, we can replace reader.Dispose with reader.Close in this example). After

all, it’s right there in the code.

TextReader reader = ...; ... string line = reader.ReadLine(); while (line != null) { ... line =

reader.ReadLine(); } reader.Dispose();

Sometimes it’s not an issue if one particular statement does not run, but on many

occasions it can be a big problem. If the statement releases a resource that was acquired in a

previous statement, failing to execute this statement results in the resource being retained.

This example is just such a case: when we open a file for reading, this operation acquires a

resource (a file handle), and we must ensure that we call reader.Dispose to release the

resource (reader.Close actually calls reader.Dispose in Windows 7 and Windows 8 to do

this). If we don’t, sooner or later we’ll run out of file handles and be unable to open more

files. If we find file handles are too trivial, think of database connections, instead.

The way to ensure that a statement is always run, whether or not an exception has been

thrown, is to write that statement inside a finally block. A finally block occurs immediately

after a try block or immediately after the last catch handler after a try block. As long as the

program enters the try block associated with a finally block, the finally block will always be

run, even if an exception occurs. If an exception is thrown and caught locally, the exception

handler executes first, followed by the finally block. If the exception is not caught locally

(that is, the runtime has to search through the list of calling methods to find a handler), the

finally block runs first. In any case, the finally block always executes.

The solution to the reader.Close problem is as follows:

TextReader reader = ...;...try{ string line = reader.ReadLine(); while (line != null) { ... line =

reader.ReadLine(); }}finally{ if (reader != null) { reader.Dispose(); }}

Even if an exception occurs while reading the file, the finally block ensures that the

reader.Dispose statement always executes. We’ll see another way to handle this situation in

Chapter 14, “Using garbage collection and resource management.”

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 40

MODULE-2 [CHAPTER-1]

CREATING AND MANAGING CLASSES AND OBJECTS

Understanding classification

Class is the root word of the term classification. When we design a class, we systematically arrange

information and behaviour into a meaningful entity. For example, all cars share common behaviours (they

can be steered, stopped, accelerated, and so on) and common attributes (they have a steering wheel, an

engine, and so on). People use the word car to mean an object that shares these common behaviours and

attributes. Without classification, it’s hard to imagine how people could think or communicate at all.

The purpose of encapsulation

Encapsulation is an important principle when defining classes. Encapsulation actually has two purposes:

■ To combine methods and data within a class; in other words, to support classification

■ To control the accessibility of the methods and data; in other words, to control the use of the class

Defining and using a class

In C#, we use the class keyword to define a new class. The data and methods of the class occur in the

body of the class between a pair of braces. Following is a C# class called Circle that contains one method

(to calculate the circle’s area) and one piece of data (the circle’s radius):

class Circle

{

int radius;

double Area()

{

return Math.PI * radius * radius;

}

}

 We create a variable specifying Circle as its type, and then we initialize the variable with

some valid data. Here is an example:

Circle c; // Create a Circle variable

 c = new Circle(); // Initialize it

 We cannot write a statement such as this because it gives an error:

 Circle c;

 c = 42;

 We can directly assign an instance of a class to another variable of the same type, like this:

Circle c;

c = new Circle();

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 41

Circle d;

d = c;

Controlling accessibility

■ A method or field is private if it is accessible only from within the class. To declare that a method or

field is private, we write the keyword private before its declaration. As intimated previously, this is

actually the default, but it is good practice to state explicitly that fields and methods are private to avoid

any confusion.

■ A method or field is public if it is accessible from both within and outside of the class. To declare that a

method or field is public, we write the keyword public before its declaration.

Area is declared as a public method and radius is declared as a private field:

class Circle

 {

private int radius;

public double Area()

{

return Math.PI * radius * radius;

}

}

 radius is declared as a private field and is not accessible from outside the class, radius is

accessible from within the Circle class. The Area method is inside the Circle class, so the

body of Area has access to radius.

Working with constructors

When we use the new keyword to create an object, the runtime needs to construct that object by using the

definition of the class. The runtime must grab a piece of memory from the operating system, fill it with

the fields defined by the class, and then invoke a constructor to perform any initialization required.

 A constructor is a special method that runs automatically when we create an instance of a

class. It has the same name as the class, and it can take parameters, but it cannot return a

value (not even void). Every class must have a constructor. If we don’t write one, the

compiler automatically generates a default constructor for us. (However, the compiler-

generated default constructor doesn’t actually do anything.)

 We can write our own default constructor quite easily. Just add a public method that does not

return a value and give it the same name as the class. The following example shows the

Circle class with a default constructor that initializes the radius field to 0:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 42

 class Circle

{

private int radius;

public Circle() // default constructor

{

radius = 0; }

public double Area()

{

return Math.PI * radius * radius;}

}

 We use dot notation to invoke the Area method on a Circle object:

 Circle c;

c = new Circle();

double areaOfCircle = c.Area();

Overloading constructors

Overloading constructor is a constructor where parameters are passed to it is called overloaded

constructor. A constructor is just a special kind of method and it—like all methods—can be overloaded.

We can add another constructor to the Circle class, with a parameter that specifies the radius to use, like

this:

 class Circle

{

private int radius;

public Circle() // default constructor

{

radius = 0;

}

public Circle(int initialRadius) // overloaded constructor

{

radius = initialRadius;

}

public double Area()

{

return Math.PI * radius * radius;

}

}

 We can then use this constructor when creating a new Circle object, such as in the following:

 Circle c;

c = new Circle(45);

 The compiler works out which constructor it should call based on the parameters that we

specify to the new operator.

NOTE: If we write wer own constructor for a class, the compiler does not generate a default constructor.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 43

Partial classes

● A class can contain a number of methods, fields, and constructors, as well as other items

● We can split the source code for a class into separate files so that we can organize the definition

of a large class into smaller, easier to manage pieces.

● When we split a class across multiple files, we define the parts of the class by using the partial

keyword in each file.

For example:

partial class Circle

 {

 public Circle() // default constructor

 { this.radius = 0; }

public Circle(int initialRadius) // overloaded constructor

 { this.radius = initialRadius; }

 }

 The contents look like this:

partial class Circle

{

private int radius;

public double Area()

{

 return Math.PI * this.radius * this.radius;

}

}

 When we compile a class that has been split into separate files, we must provide all the files

to the compiler.

Understanding static methods and data

In C#, all methods must be declared within a class. However, if we declare a method or a field as static,

we can call the method or access the field by using the name of the class. No instance is required. This is

how the Sqrt method of the Math class is declared:

class Math

{

public static double Sqrt(double d)

{ ... }

...}

 A static method does not depend on an instance of the class, and it cannot access any instance

fields or instance methods defined in the class; it can use only fields and other methods that

are marked as static.

Creating a shared field

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 44

Defining a field as static makes it possible for we to create a single instance of a field that is shared

among all objects created from a single class.

class Circle

{

private int radius;

public static int NumCircles =10;

public Circle() // default constructor

{

radius = 0;

NumCircles++;

}

public static main() c1 c2

{ Circle c1=new Circle();

 Circle c2=new Circle();

}}

 We can access the NumCircles field from outside of the class by specifying the Circle class

rather than a Circle object, such as in the following example:

Console.WriteLine("Number of Circle objects: {0}", Circle.NumCircles);

Creating a static field by using the const keyword

● By prefixing the field with the const keyword, we can declare that a field is static but that its

value can never change.

● The keyword const is short for constant.

● We can declare a field as const only when the field is a numeric type.

● Once the value is declared as const, it cannot be changed throughout the execution of program.

Whereas static value changes.

Understanding static classes

● A static class can contain only static members.

● The purpose of a static class is purely to act as a holder of utility methods and fields. A static

class cannot contain any instance data or methods, and it does not make sense to try to create an

object from a static class by using the new operator.

● If we are defining our own version of the Math class, one containing only static members, it

could look like this:
For example,

● public static class Math

{ public static double Sin(double x) {...}

public static double Cos(double x) {...}

public static double Sqrt(double x) {...}

...

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 45

}

● public static class Circle

{

 public static num=10;

 public static method()

 {

 ….

 }

 }

Console.writeLine(“value:{0}”, Circle.num);

Circle.method();

Anonymous classes

An anonymous class is a class that does not have a name.

❖ We create an anonymous class simply by using the new keyword and a pair of braces defining the

fields and values that we want the class to contain, like this:

myAnonymousObject = new { Name = "John", Age = 47 };

This class contains two public fields called Name (initialized to the string “John”) and Age

(initialized to the integer 47).

❖ When we define an anonymous class, the compiler generates its own name for the class, but it

won’t tell we what it is.

❖ We declare myAnonymousObject as an implicitly typed variable by using the var keyword, like

this:

var myAnonymousObject = new { Name = "John", Age = 47 };

Remember that the var keyword causes the compiler to create a variable of the same type as the

expression used to initialize it.

❖ We can access the fields in the object by using the familiar dot notation, as is demonstrated here:

Console.WriteLine("Name: {0} Age: {1}", myAnonymousObject.Name,

myAnonymousObject.Age};

❖ We can even create other instances of the same anonymous class but with different values, such

as in the following:

var anotherAnonymousObject = new { Name = "Diana", Age = 46 };

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 46

MODULE-2 [CHAPTER-2]

UNDERSTANDING VALUES AND REFERENCES

Copying value type variables and classes

● VALUE TYPE: Most of the primitive types built into C#, such as int, float, double,

and char are collectively called value types. These types have a fixed size, and when

we declare a variable as a value type, the compiler generates code that allocates a

block of memory big enough to hold a corresponding value in stack.

● REFERENCE TYPE: Class types such as Circle are handled differently. When we

declare a Circle variable, the compiler does not generate code that allocates a block

of memory big enough to hold a Circle; all it does is allot a small piece of memory

that can potentially hold the address of (or a reference to) another block of memory

containing a Circle. A class is an example of a reference type. Reference types hold

references to blocks of memory.

Eq: int i = 42; // declare and initialize i

int copyi = i; /* copyi contains a copy of the data in i:i and copyi both contain the

value 42 */

i++; /* incrementing i has no effect on copyi; i now contains 43, but copyi still

contains 42 */

Circle c = new Circle(42);

Circle refc = c;

refc.Circle(53); // Effects to both c and refc

Understanding null values and nullable types

➢ When we declare a variable, it is always a good idea to initialize it. With value types,

int i = 0;

double d = 0.0;

➢ Let’s initialize reference type

Circle c = new Circle(42);

Circle copy = new Circle(99); // Some random value, for initializing copy

...

copy = c; // copy and c refer to the same object.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 47

After assigning c to copy, what happens to the original Circle object with a radius of 99 that we used to

initialize copy? Nothing refers to it anymore. In this situation, the runtime error occurs.

In C#, we can assign the null value to any reference variable. The null value simply means that the

variable does not refer to an object in memory. We can use it like this:

Circle c = new Circle(42);

Circle copy = null; // Initialized

...

if (copy == null)

{

copy = c; // copy and c refer to the same object

...

}

Using nullable types

❖ The null value is useful for initializing reference types. Sometimes, we need an equivalent value

for value types, but null is itself a reference, and so we cannot assign it to a value type. The

following statement is therefore illegal in C#:

int i = null; // illegal

❖ A nullable value type behaves in a similar manner to the original value type, but we can assign

the null value to it. We use the question mark (?) to indicate that a value type is nullable, like this:

int? i = null; // legal

❖ We can ascertain whether a nullable variable contains null by testing it in the same way as a

reference type.

if (i == null)

...

❖ We can assign an expression of the appropriate value type directly to a nullable variable. The

following examples are all legal:

int? i = null;

int j = 99;

i = 100; // Copy a value type constant to a nullable type

i = j; // Copy a value type variable to a nullable type

❖ j = i; // Illegal

This makes sense if we consider that the variable i might contain null, and j is a value-type that

cannot contain null. This also means that we cannot use a nullable variable as a parameter to a

method that expects an ordinary value type.

int? i = 99;

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 48

Pass.Value(i); // Compiler error: Because we cannot pass nullable to function call

Understanding the properties of nullable types

A nullable type has a pair of properties:

● The HasValue property indicates whether a nullable type contains a value or is null.

● We can retrieve the value of a non-null nullable type by reading the Value property, like this:

int? i = null;

if (!i.HasValue)

{

i = 99; // If i is null, then assign it the value 99

}

else

 {

Console.WriteLine(i.Value); // If i is not null, then display its value

 }

 This example tests the nullable variable i, and if it does not have a value (it is null), it assigns it the value

99; otherwise, it displays the value of the variable.

Using ref and out parameters

When we pass an argument to a method, the corresponding parameter is initialized with a copy of the

argument. It’s impossible for any change to the parameter to affect the value of the argument passed in.

For example, in the following code, the value output to the console is 42 and not 43. The doIncrement

method increments a copy of the argument (arg) and not the original argument,

static void doIncrement(int param)

{ param++; }

static void Main()

{

int arg = 42;

doIncrement(arg);

Console.WriteLine(arg); // writes 42, not 43

}

● The key point is this: Although the data that was referenced changed, the argument passed in as

the parameter did not—it still references the same object.

● We might want to write a method that actually needs to modify an argument. C# provides the ref

and out keywords so that we can do this.

Creating ref parameters

● If we prefix a parameter with the ref keyword, the C# compiler generates code that passes a

reference to the actual argument rather than a copy of the argument.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 49

● While using a ref parameter, anything we do to the parameter, we also do to the original argument

because the parameter and the argument both reference the same data.

● When we pass an argument as a ref parameter, we must also prefix the argument with the ref

keyword.

static void doIncrement(ref int param) // using ref

{ param++; }

static void Main()

{

int arg = 42;

doIncrement(ref arg); // using ref

Console.WriteLine(arg); // writes 43

}

 This time, the doIncrement method receives a reference to the original argument rather than a

copy, so any changes the method makes by using this reference actually change the original

value.

 For example, this operation is allowed only if arg has a defined value:

static void doIncrement(ref int param)

{

param++;

}

static void Main()

{

int arg; // not initialized

doIncrement(ref arg);

Console.WriteLine(arg);//compile time error

}

NOTE: Remember that C# enforces the rule that we cannot pass an uninitialized value as an argument to

a method even if an argument is defined as a ref argument.

Creating out parameters

● The times when we want the method itself to initialize the parameter. We can do this with the out

keyword.

● We can prefix a parameter with the out keyword so that the parameter becomes an alias for the

argument.

● When we pass an out parameter to a method, the method must assign a value to it before it

finishes or retur

● An out parameter must be assigned a value by the method; we’re allowed to call the method

without initializing its argument. For example,

static void doInitialize(out int param)

{

param = 42;

}

static void Main()

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 50

{

int arg; // not initialized

doInitialize(out arg); // legal

Console.WriteLine(arg); // writes 42

}

How computer memory is organized

Computers use memory to hold programs that are being executed and the data that these programs use. To

understand the differences between value and reference types, it is helpful to understand how data is

organized in memory.

The two areas of memory are traditionally called the stack and the heap.

■ When we call a method, the memory required for its parameters and its local variables is always

acquired from the stack.

■ When we create an object (an instance of a class) by using the new keyword, the memory required to

build the object is always acquired from the heap.

The names stack and heap come from the way in which the runtime manages the memory:

➢ Stack memory is organized like a stack of boxes piled on top of one another. When a method is

called, each parameter is put in a box that is placed on top of the stack.

➢ Heap memory is like a large pile of boxes around a room rather than stacked neatly on top of each

other. Each box has a label indicating whether it is in use. When a new object is created, the

runtime searches for an empty box and allocate it to the object. The reference to the object is

stored in a local variable on the stack. When the last reference disappears, the runtime marks the

box as not in use.

Using the stack and the heap

 Let’s examine what happens when the following method Method is called:

void Method(int param)

{

Circle c;

c = new Circle(param);

...

}

Suppose the argument passed into param is the value 42. When the method is called, a block of memory

is allocated from the stack and initialized with the value 42. Circle object is allocated from the heap.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 51

NOTE: We should note two things:

➢ Although the object is stored on the heap, the reference to the object (the variable c) is stored on

the stack.

➢ Heap memory is not infinite. If heap memory is exhausted, the new operator will throw an

OutOfMemoryException exception and the object will not be created.

The System.Object class

● We can use System.Object to create a variable that can refer to any reference type.

● System.Object is an important class that C# provides the object keyword as an alias for

System.Object.

In the following example, the variables c and o both refer to the same Circle object.

Circle c;

c = new Circle(42);

object o;

o = c;

Boxing

Variables of type object can refer to any item of any reference type. However, variables of type object can

also refer to a value type. For example, the following two statements initialize the variable i to 42 and

then initialize the variable o to i:

int i = 42;

object o = i;

Remember that ‘i’ is a value type and that it lives on the stack. If the reference inside o referred directly to

i, the reference would refer to the stack. However, all references must refer to objects on the heap; the

runtime allocates a piece of memory from the heap, copies the value of integer i to this piece of memory,

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 52

and then refers the object o to this copy. This automatic copying of an item from the stack to the heap is

called boxing.

Unboxing

We might expect to be able to access the boxed int value that a variable o refers to by using a simple

assignment statement

 int i = o;//compile time error

o could be referencing absolutely anything and not just an int. Consider the following code:

Circle c = new Circle();

int i = 42;

object o;

o = c; // o refers to a circle

i = o; // what is stored in i?

To obtain the value of the boxed copy, we must use a cast. This is an operation that checks whether it is

safe to convert an item of one type to another before it actually makes the copy.

int i = 42;

object o = i; // boxes

i = (int)o; // compiles okay

The effect of this cast is okay. If o really does refer to a boxed int and everything matches, the cast

succeeds and the compiler-generated code extracts the value from the boxed int and copies it to i. This is

called unboxing.

If o does not refer to a boxed int, there is a type mismatch, causing the cast to fail. The compiler-

generated code throws an InvalidCastException exception at run time. An example of unboxing cast that

fails:

Circle c = new Circle(42);

object o = c; // doesn't box because Circle is a reference variable

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 53

int i = (int)o; // compiles okay but throws an exception at run time

Casting data safely

 If the type of object in memory does not match the cast, the runtime will throw an InvalidCastException,

We should be prepared to catch this exception and handle it appropriately if it occurs.

➢ C# provides two more very useful operators that can help we perform casting in a much more

elegant manner: the is and as operators.

The is operator

The is operator takes two operands: a reference to an object on the left ,and the name of a type on the

right. If the type of the object referenced on the heap has the specified type, is evaluates to true;

otherwise, is evaluates to false.

The preceding code attempts to cast the reference to the object variable o only if it knows that the cast

will succeed.

WrappedInt wi = new WrappedInt();

...

object o = wi;

if (o is WrappedInt)

{

WrappedInt temp = (WrappedInt)o; // This is safe; o is a WrappedInt

...

}

The as operator

The as operator fulfills a similar role to is but in a slightly truncated manner.

WrappedInt wi = new WrappedInt();

...

object o = wi;

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 54

WrappedInt temp = o as WrappedInt;

if (temp != null)

{

... // Cast was successful

}

The as operator takes an object and a type as its operands. The runtime attempts to cast the object to the

specified type. If the cast is successful, the result(object) is returned and, in this example, it is assigned to

the WrappedInt variable temp. If the cast is unsuccessful, the as operator evaluates to the null value and

assigns that to temp instead.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 55

MODULE-2 [CHAPTER-3]

CREATING VALUE TYPES WITH ENUMERATIONS AND STRUCTURES

Working with enumerations

Suppose that we want to represent the seasons of the year in a program. We could use the integers 0, 1, 2,

and 3 to represent spring, summer, fall, and winter, respectively. This system would work, but it’s not

very intuitive. C# offers a better solution. We can create an enumeration (sometimes called an enum

type), whose values are limited to a set of symbolic names.

Declaring an enumeration

We define an enumeration by using the enum keyword, followed by a set of symbols identifying the legal

values that the type can have, enclosed between braces. Here’s how to declare an enumeration named

Season whose literal values are limited to the symbolic names Spring, Summer, Fall, and Winter:

enum Season { Spring, Summer, Fall, Winter }

Using an enumeration

If the name of our enumeration is Season, we can create variables of type Season, fields of type Season

and parameters of type Season, as in this example:

enum Season { Spring, Summer, Fall, Winter }

class Example

{

public void Method(Season parameter) // method parameter example

{

Season localVariable; // local variable example

...

}

private Season currentSeason; // field example

}

❖ We can assign a value that is defined by the enumeration only to an enumeration variable, as is

illustrated here:

Season colorful = Season.Fall;

Console.WriteLine(colorful); // writes out 'Fall'

This is useful because it makes it possible for different enumerations to coincidentally contain literals

with the same name.

❖ We can explicitly convert an enumeration variable to a string that represents its current value by

using the built-in ToString method that all enumerations automatically contain.

string name = colorful.ToString();

Console.WriteLine(name); // also writes out 'Fall'

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 56

Choosing enumeration literal values

An enumeration type associates an integer value with each element of the enumeration. By default, the

numbering starts at 0 for the first element and goes up in steps of 1. It’s possible to retrieve the underlying

integer value of an enumeration variable. To do this, we must cast it to its underlying type.

enum Season { Spring, Summer, Fall, Winter }

...

Season colorful = Season.Fall;

Console.WriteLine((int)colorful); // writes out '2'

❖ We can associate a specific integer constant (such as 1) with an enumeration literal (such as

Spring).

enum Season { Spring = 1, Summer, Fall, Winter }

In the above example, the underlying values of Spring, Summer, Fall, and Winter are now 1, 2, 3, and 4.

❖ We are allowed to give more than one enumeration literal the same underlying value. For

example, in the United Kingdom, Fall is referred to as Autumn. For example:

enum Season { Spring, Summer, Fall, Autumn = Fall, Winter }

Choosing an enumeration’s underlying type

❖ When we declare an enumeration, the enumeration literals are given values of type int. We can

also choose different underlying integer type.

 For example, to declare that Season’s underlying type is a short rather than an int, we can write this:

enum Season : short { Spring, Summer, Fall, Winter }

❖ The main reason for doing this is to save memory; an int occupies more memory than a short.

❖ We can base an enumeration on any of the eight integer types: byte, sbyte, short, ushort, int, uint,

long, or ulong.

Working with structures

❖ A structure is a value type. Because structures are stored on the stack, as long as the structure is

reasonably small, the memory management overhead is often reduced.

❖ Like a class, a structure can have its own fields, methods, and constructors.

Declaring a structure

To declare a structure type, we use the struct keyword followed by the name of the type, followed by the

body of the structure, between opening and closing braces. The process is similar to declaring a class.

struct Time

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 57

{

public int hours, minutes, seconds;

}

As like classes, making the fields of a structure public is not advisable in most cases; there is no way to

control the values held in public fields. A better idea is to make the fields private and provide wer

structure with constructors and methods to initialize and manipulate these fields, as in this example:

struct Time

{

private int hours, minutes, seconds;

...

public Time(int hh, int mm, int ss)

{

this.hours = hh % 24;

this.minutes = mm % 60;

this.seconds = ss % 60;

}

public int Hours()

{

return this.hours;

}

}

❖ When we copy a value type variable, we get two copies of the value. In contrast, when we copy a

reference type variable, we get two references to the same object.

NOTE: use structures for small data values for which it’s efficient to copy the value as it would be to

copy an address. Use classes for more complex data that is too big to copy efficiently.

Understanding structure and class differences

A structure and a class are syntactically similar, but there are a few important differences.

❖ We can’t declare a default constructor (a constructor with no parameters) for a structure. For

example:

struct Time

{

public Time() { ... } // compile-time error

...

}

❖ The reason we can’t declare our own default constructor for a structure is that the compiler

always generates one.

❖ In a class, the compiler generates the default constructor only if we don’t write a constructor our

self. The compiler-generated default constructor for a structure always sets the fields to 0, false,

or null—just as for a class.

❖ Therefore, we should ensure that a structure value created by the default constructor behaves

logically and makes sense with these default values.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 58

❖ We can initialize fields to different values by providing a nondefault constructor. Our nondefault

constructor must explicitly initialize all fields in our structure; the default initialization no longer

occurs.

struct Time

{

private int hours, minutes, seconds;

...

public Time(int hh, int mm)

{

this.hours = hh;

this.minutes = mm;

} // compile-time error: seconds not initialized

}

In a class, we can initialize instance fields at their point of declaration. But in a structure, we cannot. The

following example would compile if Time was a class, but because Time is a structure, it causes a

compile-time error:

struct Time

{

private int hours = 0; // compile-time error

private int minutes;

private int seconds;

...

}

The following table summarizes the main differences between a structure and a class.

Question Structure Class

Is this a value type or a reference

type?

A structure is a value type. A class is a reference type.

Do instances live on the stack or the

heap?

Structure instances are called

values and live on the stack.

Class instances are called objects

and live on the heap.

Can we declare a default constructor? No. Yes.

If we declare wer own constructor,

will the compiler still generate the

default constructor?

Yes. No.

If we don’t initialize a field in wer

own constructor, will the compiler

automatically initialize it for we?

No. Yes.

Are we allowed to initialize instance

fields at their point of declaration?

No. Yes.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 59

Declaring structure variables

After defining a structure type, we can use it in the same way as any other type. For example, if we have

defined the Time structure, we can create variables, fields, and parameters of type Time, as in this

example:

struct Time

{

private int hours, minutes, seconds;

...

}

class Example

{

private Time currentTime;

public void Method(Time parameter)

{

Time localVariable;

...

}

}

Understanding structure initialization

If we call a constructor, all the fields in the structure will be initialized:

Time now = new Time();

The following graphic depicts the state of the fields in this structure:

NOTE: Because structures are value types, we can also create structure variables without calling a

constructor, like this:

Time now;

Here, the variable is created but its fields are left in their uninitialized state. The following graphic depicts

the state of the fields in the now variable. Any attempt to access the values in these fields will result in a

compiler error:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 60

Note that in both cases, the Time variable is created on the stack.

❖ If we’ve written our own structure constructor, we can also use that to initialize a structure

variable. A structure constructor must always explicitly initialize all its fields. For example:

struct Time

{

private int hours, minutes, seconds;

...

public Time(int hh, int mm)

{

hours = hh;

minutes = mm;

seconds = 0;

}

}

This example initializes now by calling a user-defined constructor:

Time now = new Time(12, 30);

The following graphic shows the effect of this example:

Copying structure variables

We’re allowed to initialize or assign one structure variable to another structure variable, but only if the

structure variable on the right side is completely initialized. The following example compiles because

now is fully initialized.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 61

Date now = new Date(); Date copy = now;

The following example fails to compile because now is not initialized:

Date now;

Date copy = now; // compile-time error: now has not been assigned

When we copy a structure variable, each field on the left side is set directly from the corresponding field

on the right side.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 62

MODULE-2 [CHAPTER-4]

USING ARRAYS

Declaring and creating an array

❖ An array is an unordered sequence of items.

❖ All the items in an array have the same type, unlike the fields in a structure or class, which can

have different types.

❖ The items in an array live in a contiguous block of memory and are accessed by using an index,

unlike fields in a structure or class, which are accessed by name.

Declaring array variables

We declare an array variable by specifying the name of the element type, followed by a pair of square

brackets, followed by the variable name.

❖ The square brackets signify that the variable is an array.

 For example, to declare an array of int variables named pins (for holding a set of personal

identification numbers) we can write the following:

 int[] pins; // Personal Identification Numbers

❖ We are not restricted to primitive types as array elements.

❖ We can also create arrays of structures, enumerations, and classes. For example, we can create an

array of Date structures like this:

Date[] dates;

Creating an array instance

❖ Arrays are reference types, regardless of the type of their elements.

❖ This means that an array variable refers to a contiguous block of memory holding the array

elements on the heap, just as a class variable refers to an object on the heap.

❖ This rule applies regardless of the type of the data items in the array. Even if the array contains a

value type such as int, the memory will still be allocated on the heap; this is the one case where

value types are not allocated memory on the stack.

Arrays follow the pattern: when we declare an array variable, we do not declare its size and no memory is

allocated.

❖ The array is allocated memory only when the instance is created, and this is also the point at

which we specify the size of the array.

❖ To create an array instance, we use the new keyword followed by the element type, followed by

the size of the array we’re creating between square brackets.

❖ Creating an array also initializes its elements by using the default values (0, null, or false,

depending on whether the type is numeric, a reference, or a Boolean, respectively). For example,

to create and initialize a new array of four integers for the pins variable declared earlier, we write

this:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 63

pins = new int[4];

The following graphic illustrates what happens when we declare an array, and later when we create an

instance of the array:

NOTE: Because the memory for the array instance is allocated dynamically, the size of the array does not

have to be a constant; it can be calculated at run time, as shown in this example:

int size = int.Parse(Console.ReadLine());

int[] pins = new int[size];

❖ We can also create an array whose size is 0. It’s useful for situations in which the size of the array

is determined dynamically and could even be 0. An array of size 0 is not a null array; it is an array

containing zero elements.

Populating and using an array

When we create an array instance, all the elements of the array are initialized to a default value depending

on their type.

For example,

● all numeric values default to 0,

● objects are initialized to null,

● DateTime values are set to the date and time “01/01/0001 00:00:00”, and

● strings are initialized to null.

1. We can modify this behaviour and initialize the elements of an array to specific values if we

prefer. We achieve this by providing a comma-separated list of values between a pair of braces.

For example, to initialize pins to an array of four int variables whose values are 9, 3, 7, and 2, we

write:

 int[] pins = new int[4]{ 9, 3, 7, 2 };

2. The number of values between the braces must exactly match the size of the array instance being

created:

int[] pins = new int[3]{ 9, 3, 7, 2 }; // compile-time error

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 64

int[] pins = new int[4]{ 9, 3, 7 }; // compile-time error

int[] pins = new int[4]{ 9, 3, 7, 2 }; // OK

3. When we’re initializing an array variable in this way, we can actually omit the new expression

and the size of the array. In this case, the compiler calculates the size from the number of

initializers and generates code to create the array, such as in the example:

int[] pins = { 9, 3, 7, 2 };

4. If we create an array of structures or objects, we can initialize each structure in the array by

calling the structure or class constructor, as in this example:

Time[] schedule = { new Time(12,30), new Time(5,30) };

Creating an implicitly typed array

❖ The element type when we declare an array must match the type of elements that we attempt to

store in the array.

 For example, if we declare pins to be an array of int, we cannot store a double, string, struct, or

anything that is not an int in this array.

❖ If we specify a list of initializers when declaring an array, we can let the C# compiler infer the

actual type of the elements in the array for us, like this:

var names = new[]{"John", "Diana", "James", "Francesca"};

Here, the C# compiler determines that the names variable is an array of strings.

❖ If we use this syntax, we must ensure that all the initializers have the same type.

var bad = new[]{"John", "Diana", 99, 100};//compile time error

❖ In some cases, the compiler will convert elements to a different type. In the following code, the

numbers array is an array of double because the constants 3.5 and 99.999 are both double, and the

C# compiler can convert the integer values 1 and 2 to double values:

var numbers = new[]{1, 2, 3.5, 99.999};

Generally, it is best to avoid mixing types and hoping that the compiler will convert them for us.

Implicitly typed arrays are most useful when we are working with anonymous types. The following code

creates an array of anonymous objects, each containing two fields specifying the name and age of the

members of my family:

var names = new[] { new { Name = "John", Age = 47 },

new { Name = "Diana", Age = 46 },

new { Name = "James", Age = 20 },

new { Name = "Francesca", Age = 18 } };

The fields in the anonymous types must be the same for each element of the array.

Accessing an individual array element

❖ To access an individual array element, we must provide an index indicating which element we

require.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 65

❖ Array indexes are zero-based; thus, the initial element of an array lives at index 0 and not index 1.

❖ An index value of 1 accesses the second element.

For example, we can read the contents of element 2 of the pins array into an int variable by using

the following code:

int myPin;

myPin = pins[2];

❖ Similarly, we can change the contents of an array by assigning a value to an indexed element:

myPin = 1645;

pins[2] = myPin;

❖ All array element access is bounds-checked. If we specify an index that is less than 0 or greater

than or equal to the length of the array, the compiler throws an IndexOutOfRangeException

exception, as in example:

try

{

int[] pins = { 9, 3, 7, 2 };

Console.WriteLine(pins[4]); // error, the 4th and last element is at index 3

}

catch (IndexOutOfRangeException ex)

{

...

}

Iterating through an array

All arrays are actually instances of the System.Array class, this class defines a number of useful

properties and methods. For example, we can query the Length property to discover how many elements

an array contains and iterate through all the elements of an array by using a for statement. The following

sample code writes the array element values of the pins array to the console:

int[] pins = { 9, 3, 7, 2 };

for (int index = 0; index < pins.Length; index++)

{

int pin = pins[index];

Console.WriteLine(pin);

}

❖ It is common for new programmers to forget that arrays start at element 0 and that the last

element is numbered Length – 1.

❖ C# provides the foreach statement with which we can iterate through the elements of an array

without worrying about these issues.

 For example, here’s an equivalent foreach statement:

int[] pins = { 9, 3, 7, 2 };

foreach (int pin in pins)

{

Console.WriteLine(pin);

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 66

}

❖ The foreach statement declares an iteration variable (in this example, int pin) that automatically

acquires the value of each element in the array.

❖ The type of this variable must match the type of the elements in the array.

❖ The foreach statement is the preferred way to iterate through an array; it expresses the intention of

the code directly, and all of the for loop scaffolding drops away.

❖ However, in a few cases, we’ll find that we have to revert to a for statement:

1.A foreach statement always iterates through the entire array.

2.A foreach statement always iterates from index 0 through index Length – 1.

3.If the body of the loop needs to know the index of the element rather than just the value

of the element, we’ll have to use a for statement.

4.If we need to modify the elements of the array, we’ll have to use a for statement.

 var names = new[] { new { Name = "John", Age = 47 },

 new { Name = "Diana", Age = 46 },

 new { Name = "James", Age = 20 },

 new { Name = "Francesca", Age = 18 } };

foreach (var familyMember in names)

{

Console.WriteLine("Name: {0}, Age: {1}", familyMember.Name,

familyMember.Age);

}

Passing arrays as parameters and return values for a method

❖ We can define methods that take arrays as parameters or pass them back as return values.

❖ The syntax for passing an array as a parameter is much the same as declaring an array.

 For example, the code sample that follows defines a method called ProcessData that takes an

array of integers as a parameter. The body of the method iterates through the array and performs

some unspecified processing on each element:

public void ProcessData(int[] data)

{

foreach (int i in data)

{

...

}

}

❖ It is important to remember that arrays are reference objects, so if we modify the contents of an

array passed as a parameter inside a method such as ProcessData, the modification is visible

through all references to the array, including the original argument passed as the parameter.

To return an array from a method, we specify the type of the array as the return type. The array created by

the method is passed back as the return value:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 67

public int[] ReadData()

{

Console.WriteLine("How many elements?");

string reply = Console.ReadLine();

int numElements = int.Parse(reply);

int[] data = new int[numElements];

for (int i = 0; i < numElements; i++)

{

Console.WriteLine("Enter data for element {0}", i);

reply = Console.ReadLine();

int elementData = int.Parse(reply);

data[i] = elementData;

}

return data;

}

❖ We can call the ReadData method like this:

int[] data = ReadData();

Copying arrays

❖ Arrays are reference types.

❖ An array variable contains a reference to an array instance.

❖ This means that when we copy an array variable, we actually end up with two references to the

same array instance, as in the following example:

int[] pins = { 9, 3, 7, 2 };

int[] alias = pins; // alias and pins refer to the same array instance

 If we modify the value at pins[1], the change will also be visible by reading alias[1].

❖ If we want to make a copy of the array instance (the data on the heap) that an array variable refers

to, we have to do two things.

❖ First, we create a new array instance of the same type and the same length as the array we are

copying.

❖ Second, we copy the data element by element from the original array to the new array, as in this

example:

int[] pins = { 9, 3, 7, 2 };

int[] copy = new int[pins.Length];

for (int i = 0; i < pins.Length; i++)

{

copy[i] = pins[i];

}

Note that this code uses the Length property of the original array to specify the size of the new array.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 68

Copying an array is actually a common requirement of many applications—so much so that the

System.Array class provides some useful methods that we can employ to copy an array rather than writing

wer own code.

int[] pins = { 9, 3, 7, 2 };

int[] copy = new int[pins.Length];

pins.CopyTo(copy, 0);

Another way to copy the values is to use the System.Array static method named Copy. As with CopyTo,

we must initialize the target array before calling Copy:

int[] pins = { 9, 3, 7, 2 };

int[] copy = new int[pins.Length];

Array.Copy(pins, copy, copy.Length);

Another alternative is to use the System.Array instance method named Clone. We can call this method to

create an entire array and copy it in one action:

int[] pins = { 9, 3, 7, 2 };

int[] copy = (int[])pins.Clone();

Using multidimensional arrays

We can create arrays with more than one dimension is called multidimensional array.

For example, to create a two-dimensional array, We specify an array that requires two integer indexes.

The first dimension specifying a number of rows, and the second specifying a number of columns.

int[,] items = new int[4, 6];

To access an element in the two-dimensional array, we provide two index values to specify the “cell”

holding the element. (A cell is the intersection of a row and a column).

items[2, 3] = 99; // set the element at cell(2,3) to 99

items[2, 4] = items [2,3]; // copy the element in cell(2, 3) to cell(2, 4)

items[2, 4]++; // increment the integer value at cell(2, 4)

There is no limit on the number of dimensions that we can specify for an array. The next example creates

and uses an array called cube that contains three dimensions. Notice that we must specify three indexes to

access each element in the array.

int[, ,] cube = new int[5, 5, 5];

cube[1, 2, 1] = 101;

cube[1, 2, 2] = cube[1, 2, 1] * 3;

Caution: About creating arrays with more than three dimensions.

❖ Arrays can consume a lot of memory.

❖ The cube array contains 125 elements (5 * 5 * 5).

❖ A four-dimensional array for which each dimension has a size of 5 contains 625 elements.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 69

❖ If we start to create arrays with three or more dimensions, we can soon run out of memory.

Therefore, we should always be prepared to catch and handle OutOfMemoryException

exceptions when we use multidimensional arrays.

 Creating jagged arrays

In C#, multidimensional arrays are sometimes referred to as rectangular arrays. Each dimension has a

regular shape.

For example, in the following tabular two-dimensional items array, every row has a column containing 40

elements, and there are 160 elements in total:

int[,] items = new int[4, 40];

As mentioned above, multidimensional arrays can consume a lot of memory.If the application uses only

some of the data in each column, allocating memory for unused elements is a waste. In this scenario, we

can use a jagged array, for which each column has a different length, like this:

int[][] items = new int[4][];

int[] columnForRow0 = new int[3];

int[] columnForRow1 = new int[10];

int[] columnForRow2 = new int[40];

int[] columnForRow3 = new int[25];

items[0] = columnForRow0;

items[1] = columnForRow1;

items[2] = columnForRow2;

items[3] = columnForRow3;

...

In this example, the application requires only 3 elements in the first column, 10 elements in the second

column,40 elements in the third column, and 25 elements in the final column. This code illustrates an

array of arrays—rather than items being a two-dimensional array, it has only a single dimension, but the

elements in that dimension are themselves arrays. Furthermore, the total size of the items array is 78

elements rather than 160; no space is allocated for elements that the application is not going to use.

❖ The following declaration specifies that items is an array of arrays of int.

int[][] items;

❖ The following statement initializes items to hold four elements, each of which is an array of

indeterminate length:

items = new int[4][];

❖ The arrays columnForRow0 to columnForRow3 are all single-dimensional int arrays, initialized

to hold the required amount of data for each column.

items[0] = columnForRow0;

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 70

❖ We can populate data in this column either by assigning a value to an indexed element in

columnForRow0 or by referencing it through the items array. The following statements are

equivalent:

 columnForRow0[1] = 99;

 items[0][1] = 99;

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 71

MODULE 3 [CHAPTER 1]

Understanding parameter arrays

Overloading

Overloading is the technical term for declaring two or more methods with the same name in the

same scope. It is very useful for cases in which we want to perform the same action on

arguments of different types. The classic example of overloading is the Console.WriteLine

method. This method is overloaded numerous times so that we can pass any primitive type

argument. For example:

class Console

{ public static void WriteLine(Int value)

 public static void WriteLine(Double value)

 public static void WriteLine(Decimal value)

 public static void WriteLine(Boolean value)

 public static void WriteLine(String value)

 ...

}

Overloading doesn’t easily handle a situation in which the type of parameters doesn’t vary but

the number of parameters does. Fortunately, there is a way to write a method that takes a variable

number of arguments (a variadic method): we can use a parameter array (a parameter declared by

using the params keyword).

Let’s first understand the uses and shortcomings of ordinary arrays.

Using array arguments

Suppose that we want to write a method to determine the minimum value in a set of values

passed as parameters. One way is to use an array. For example, to find the smallest of several int

values, we could write a static method named Min with a single parameter representing an array

of int values:

class Util

 { public static int Min(int[] paramList)

 { // Verify that the caller has provided at least one parameter.

 // If not, throw an ArgumentException exception – it is not possible

 // to find the smallest value in an empty list.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 72

 if (paramList == null || paramList.Length == 0)

 { throw new ArgumentException("Util.Min: not enough arguments");

 }

 // Set the current minimum value found in the list of parameters to the first item

 int currentMin = paramList[0];

 // Iterate through the list of parameters, searching to see whether any of them

 // are smaller than the value held in currentMin

 foreach (int i in paramList)

 { // If the loop finds an item that is smaller than the value held in

 // currentMin, then set currentMin to this value

 if (i < currentMin)

 { currentMin = i;

 }

 }

 // At the end of the loop, currentMin holds the value of the smallest

 // item in the list of parameters, so return this value.

 return

currentMin;

 }

}

To use the Min method to find the minimum of two int variables named first and second, we can

write this:

int[] array = new int[2];

array[0] = first;

array[1] = second;

 int min = Util.Min(array);

We can see that this avoids the need for a large number of overloads. We can also use an

anonymous array if we prefer, like this:

 int min = Util.Min(new int[] {first, second});

However, the point is that we still need to create and populate an array, and the syntax can get a

little confusing. The solution is to get the compiler to write some of this code by using a params

array as the parameter to the Min method.

Declaring a params Array

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 73

Using a params array, we can pass a variable number of arguments to a method. We indicate a

params array by using the params keyword as an array parameter modifier when you define the

method parameters. For example,

 class Util

{ public static int Min(params int[] paramList)

 {

 // code exactly as before

 }

}

The effect of the params keyword on the Min method is that it makes it possible for us to call it

by using any number of integer arguments without worrying about creating an array. For

example, to find the minimum of two integer values, we can simply write this:

 int min = Util.Min(first, second);

The compiler translates this call into code similar to this:

int[] array = new int[2];

array[0] = first;

 array[1] = second;

int min = Util.Min(array);

To find the minimum of three integer values, which is also converted by the compiler to the

corresponding code that uses an array:

 int min = Util.Min(first, second, third);

Both calls to Min (one call with two arguments and another with three arguments).

 Now to the same Min method with the params keyword, we can call the method with any

number of int arguments. The compiler just counts the number of int arguments, creates an int

array of that size, fills the array with the arguments, and then calls the method by passing the

single array parameter.

There are several points about params arrays:

❖ We can’t use the params keyword with multidimensional arrays. The code in the

following example will not compile:

❖ // compile-time error

public static int Min(params int[,] table)

...

❖ We can’t overload a method based on the params keyword. The params keyword does

not form part of a method’s signature, as shown in this example:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 74

❖ // compile-time error: duplicate declaration

public static int Min(int[] paramList)

...

public static int Min(params int[] paramList)

...

❖ We’re not allowed to specify the ref or out modifier with params arrays, as shown in this

example:

// compile-time errors

public static int Min(ref params int[] paramList)

...

public static int Min(out params int[] paramList)

...

❖ A params array must be the last parameter. (This means that you can have only one

params array per method.) Consider this example:

❖ // compile-time error

public static int Min(params int[] paramList, int i)

...

❖ A non-params method always takes priority over a params method. This means that if we

want to, we can still create an overloaded version of a method for the common cases, For

example: public static int Min(int leftHandSide, int rightHandSide)

…

public static int Min(params int[] paramList)

...

The first version of the Min method is used when called using two int arguments. The second

version is used if any other number of int arguments is supplied.

Using params object[]

A parameter array of type int is very useful. With it, we can pass any number of int arguments in

a method call. Now suppose if not only the number of arguments varies but also the argument

type varies means then we have a way to solve this problem. Then we can use a parameters array

of type object to declare a method that accepts any number of object arguments, allowing the

arguments passed in to be of any type. For example:

 class Black

{ public static void Hole(params object [] paramList)

...

}

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 75

The method is called Black.Hole, because no argument can escape from it.

❖ We can pass the method no arguments at all, in which case the compiler will pass an

object array whose length is 0:

❖ Black.Hole();

❖ // converted to Black.Hole(new object[0]);

❖ We can call the Black.Hole method by passing null as the argument. As array is a

reference type, so we’re allowed to initialize an array with null:

❖ Black.Hole(null);

❖ We can pass the Black.Hole method an actual array.

object[] array = new object[2];

array[0] = "forty two";

array[1] = 42;

Black.Hole(array);

❖ We can pass the Black.Hole method arguments of different types, and these arguments

will automatically be wrapped inside an object array:

Black.Hole("forty two", 42);

//converted to Black.Hole(new object[]{"forty two", 42});

Comparing parameter arrays and optional parameters

 There are some fundamental differences between them:

❖ A method that takes optional parameters still has a fixed parameter list, and we cannot

pass an arbitrary list of arguments. The compiler generates code that inserts the default

values onto the stack for any missing arguments before the method runs, and the method

is not aware of which of the arguments are caller provided and which are compiler-

generated defaults.

❖ A method that uses a parameter array effectively has a completely arbitrary list of

parameters, and none of them has a default value. Furthermore, the method can determine

exactly how many arguments the caller provided.

Generally, we use parameter arrays for methods that can take any number of parameters

(including none), whereas we use optional parameters only where it is not convenient to force a

caller to provide an argument for every parameter.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 76

MODULE 3[CHAPTER 2]

Working with inheritance

What is inheritance?

Inheritance in programming is all about classification—it’s a relationship between classes. For

example, when we were at school, we probably learned about mammals, and we learned that

horses and whales are examples of mammals. Each has every attribute that a mammal does (it

breathes air, it suckles its young, it is warm-blooded and so on), but each also has its own special

features (a horse has hooves, but a whale has flippers and a fluke).

 In our program, we can create two distinct classes named Horse and Whale. Each class can

implement the behaviours that are unique to that type of mammal, such as Trot (for a horse) or

Swim (for a whale), in its own way. But to handle common behaviours of both the classes we

can use class inheritance to address it, so we can create a class named Mammal that provides the

common functionality exhibited by these types. You can then declare that the Horse, Whale,

Human classes all inherited from Mammal class. These classes then automatically include the

functionality of the Mammal class (Breathe, SuckleYoung and so on), but we can also add each

class with the functionality unique to a particular type.

Using inheritance

We declare that a class inherits from another class by using the following syntax:

class DerivedClass : BaseClass

{

 ...

 }

The derived class inherits from the base class, and the methods in the base class become part of

to derive from two or more classes. However, unless DerivedClass is declared as sealed, we can

create further derived classes that inherit from DerivedClass using the same syntax.

 class DerivedSubClass : DerivedClass

{

 ...

}

We can declare the Mammal class as in the example below. The methods Breathe and

SuckleYoung are common to all mammals.

 class Mammal

{ public void Breathe()

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 77

 {

 ...

 }

 public void SuckleYoung()

 {

 ...

}

 ...

}

We can then define classes for each different type of mammal, adding more methods as

necessary, such as in the following example:

class Horse : Mammal

{

 ...

 public void Trot()

 {

 ...

 }

}

class Whale : Mammal

{

 ...

 public void Swim()

 {

 ...

 }

}

If we create a Horse object in our application, we can call the Trot, Breathe, and SuckleYoung

methods:

Horse myHorse = new Horse();

myHorse.Trot();

myHorse.Breathe();

myHorse.SuckeYoung();

Similarly, we can create a Whale object, but this time we can call the Swim, Breathe, and

SuckleYoung methods; Trot is not available because it is only defined in the Horse class.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 78

The System.Object class revisited

The System.Object class is the root class of all classes. All classes implicitly derive from

System.Object.

class Mammal : System.Object

{

 ...

}

Any methods in the System.Object class are automatically passed down the chain of inheritance

to classes that derive from Mammal, such as Horse and Whale. This means that all classes that

you define automatically inherit all the features of the System.Object class. This includes

methods such as ToString, which is used to convert an object to a string, typically for display

purposes.

Calling base class constructors

In addition to the methods that it inherits, a derived class automatically contains all the fields

from the base class. These fields usually require initialization when an object is created. We

typically perform this kind of initialization in a constructor. Remember that all classes have at

least one constructor. (If we don’t provide one, the compiler generates a default constructor for

us).

It is good practice for a constructor in a derived class to call the constructor for its base class as

part of the initialization, which enables the base-class constructor to perform any additional

initialization that it requires. We can specify the base keyword to call a base-class constructor

when we define a constructor for an inheriting class, as in this example:

 class Mammal // base class

{

 public Mammal(string name) // constructor for base class

 {

 ...

 }

 ...

}

class Horse : Mammal // derived class

{

 public Horse(string name)

 : base(name) // calls Mammal(name)

 {

 ...

 }

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 79

 ...

}

If we don’t explicitly call a base class constructor in a derived-class constructor, the compiler

attempts to silently insert a call to the base class’s default constructor before executing the code

in the derived-class constructor. The compiler rewrites it:

class Horse : Mammal

{

 public Horse(string name)

 {

 ...

 }

 ...

}

class Horse : Mammal

{

 public Horse(string name)

 : base()

 {

 ...

 }

 ...

}

This works only if Mammal has a public default constructor.

❖ Assigning classes

There are examples of how the type-checking rules prevent us from assigning an object

of one type to a variable declared as a different type. For example, given the definitions

of the Mammal, Horse, and Whale classes, the code that follows these definitions is

illegal: class Mammal

{

 ...

}

class Horse : Mammal

{

_ ...

}

class Whale : Mammal

{

 ...

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 80

}

...

Horse myHorse = new Horse(...);

Whale myWhale = myHorse; // error - different types

❖ It is possible to refer to an object from a variable of a different type as long as the type

used is a class that is higher up the inheritance hierarchy. So the following statements are

legal:

Horse myHorse = new Horse(...);

Mammal myMammal = myHorse; // legal, Mammal is the base class of Horse

❖ There is one significant limitation, when referring to a Horse or Whale object by using a

Mammal variable; you can access only methods and fields that are defined by the

Mammal class. Any additional methods defined by the Horse or Whale class are not

visible through the Mammal class.

Horse myHorse = new Horse(...);

Mammal myMammal = myHorse;

myMammal.Breathe(); // OK - Breathe is part of the Mammal class

myMammal.Trot(); // error - Trot is not part of the Mammal class

❖ Be warned that the converse situation is not true. We cannot assign a Mammal object to a

Horse variable: Mammal myMammal = newMammal(...);

Horse myHorse = myMammal; // error

These looks strange, but remember that not all Mammal objects are Horses—some might be

Whales. We can assign a Mammal object to a Horse variable as long as we need to check that the

Mammal is really a Horse first, by using the as or is operator, or by using a cast.

The example that follows uses the as operator to check that myMammal refers to a Horse.

Horse myHorse = new Horse(...);

Mammal myMammal = myHorse; // myMammal refers to a Horse

...

Horse myHorseAgain = myMammal as Horse; // OK - myMammal was a Horse ...

Whale myWhale = new Whale(...);

myMammal = myWhale;

...

myHorseAgain = myMammal as Horse; // returns null - myMammal was a Whale

Declaring new methods

If a base class and a derived class happen to declare two methods that have the same signature,

you will receive a warning when you compile the application.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 81

Note: The method signature refers to the name of the method and the number and types of its

parameters, but not its return type. Two methods that have the same name and that take the same

list of parameters have the same signature, even if they return different types.

A method in a derived class masks (or hides) a method in a base class that has the same

signature. For example, the compiler generates a warning message in this code informing us that

Horse.Talk hides the inherited method Mammal.Talk:

class Mammal

{

 ...

 public void Talk() // assume that all mammals can talk

 {

 ...

 }

}

class Horse : Mammal

{

 ...

 public void Talk() // horses talk in a different way from other mammals!

 {

 ...

 }

}

However, the Talk method in the Horse class hides the Talk method in the Mammal class, and

the Horse.Talk method will be called, instead. Most of the time, such a coincidence is at best a

source of confusion, and we should consider renaming methods to avoid clashes. However, if

we’re sure that we want the two methods to have the same signature, thus hiding the

Mammal.Talk method, we can silence the warning by using the new keyword, as follows:

 class Mammal

{

 ...

 public void Talk()

 {

 ...

 }

 }

class Horse : Mammal

{

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 82

 ...

 new public void Talk()

 {

 ...

 }

 }

Using the new keyword like this does not change the fact that the two methods are completely

unrelated and that hiding still occurs. It just turns the warning off. In effect, the new keyword

says, “I know what I’m doing, so stop showing me these warnings.”

Declaring virtual methods

● Sometimes, we do want to hide the way in which a method is implemented in a base

class.

● As an example, consider the ToString method in System.Object. The purpose of ToString

is to convert an object to its string representation.

● Because this method is very useful, it is a member of the System.Object class, thereby

automatically providing all classes with a ToString method.

● A derived class might contain any number of fields with interesting values that should be

part of the string.

● All it can do is convert an object to a string that contains the name of its type, such as

“Mammal” or “Horse”.

● Obviously, ToString is a fine idea in concept, and all classes should provide a method

that can be used to convert objects to strings for display or debugging purposes.

A method that is intended to be overridden is called a virtual method.

● We should be clear on the difference between overriding a method and hiding a

method.

● Overriding a method is a mechanism for providing different implementations of

the same method—the methods are all related because they are intended to

perform the same task, but in a class-specific manner.

● Hiding a method is a means of replacing one method with another—the methods

are usually unrelated and might perform totally different tasks.

● Overriding a method is a useful programming concept;

● Hiding a method is often an error.

We can mark a method as a virtual method by using the virtual keyword. For example, the

ToString method in the System.Object class is defined like this:

namespace System

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 83

 {

 class Object

 {

 public virtual string ToString()

 {

 ...

 }

 ...

 }

 ...

}

Declaring override methods

If a base class declares that a method is virtual, a derived class can use the override keyword to

declare another implementation of that method, as demonstrated here:

class Horse : Mammal

{

 ...

 public override string ToString()

 {

 ...

 }

}

The new implementation of the method in the derived class can call the original implementation

of the method in the base class by using the base keyword, like this:

public override string ToString()

{

 base.ToString();

 ...

}

There are some important rules we must follow when declaring polymorphic methods (as

in the sidebar “Virtual methods and polymorphism”) by using the virtual and override

keywords:

❖ A virtual method cannot be private; it is intended to be exposed to other classes through

inheritance. Similarly, override methods cannot be private because a class cannot change

the protection level of a method that it inherits. However, override methods can have a

special form of privacy known as protected access.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 84

❖ The signatures of the virtual and override methods must be identical; they must have the

same name, number, and types of parameters. In addition, both methods must return the

same type.

❖ You can only override a virtual method. If the base class method is not virtual and we try

to override it, we’ll get a compile-time error. This is sensible; it should be up to the

designer of the base class to decide whether its methods can be overridden.

❖ If the derived class does not declare the method by using the override keyword, it does

not override the base class method; it hides the method. In other words, it becomes an

implementation of a completely different method that happens to have the same name. As

before, this will cause a compile-time hiding warning, which we can silence by using the

new keyword.

❖ An override method is implicitly virtual and can itself be overridden in a further derived

class. However, we are not allowed to explicitly declare that an override method is virtual

by using the virtual keyword.

Understanding protected access

❖ The public and private access keywords create two extremes of accessibility.

❖ These two extremes are sufficient when considering classes in isolation. However, the

object-oriented programmers know, isolated classes cannot solve complex problems.

❖ Inheritance is a powerful way of connecting classes, and there is clearly close relationship

between a derived class and its base class.

❖ It is useful for a base class to allow derived classes to access some of its members while

hiding these same members from classes that are not part of the inheritance hierarchy. In

this situation, we can mark members with the protected keyword. It works like this:

✓ If a class A is derived from another class B, it can access the protected class members of

class B.

✓ If a class A is not derived from another class B, it cannot access any protected members

of class B.

● Public fields violate encapsulation because all users of the class have direct, unrestricted

access to the fields.

● However, protected fields still allow encapsulation to be violated by other classes that

inherit from the base class.

Understanding extension methods

❖ Sometimes using inheritance is not the most appropriate mechanism for adding new

behaviours, especially if we need to quickly extend a type without affecting existing

code. For example, suppose we want to add a new feature to the int type, such as a

method named Negate that returns the negative equivalent value that an integer currently

contains.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 85

class NegInt32 : System.Int32 // don't try this!

{ public int Negate()

 {

 ...

 }

}

NegInt32 will inherit all the functionality associated with the System.Int32 type in addition to the

Negate method. There are two reasons why we might not want to follow this approach:

● This method applies only to the NegInt32 type, and if we want to use it with existing int

variables in our code, we have to change the definition of every int variable to the

NegInt32 type.

● The System.Int32 type is actually a structure, not a class, and we cannot use inheritance

with structures.

This is where extension methods become very useful.

Using an extension method, we can extend an existing type (a class or a structure) with

additional static methods.

We define an extension method in a static class and specify the type to which the method applies

as the first parameter to the method, along with the this keyword. For example:

 static class Util

{

 public static int Negate(this int i)

 {

 return -i;

 }

}

The syntax looks a little odd, but it is the this keyword prefixing the parameter to Negate that

identifies it as an extension method, and the fact that the parameter that this prefixes is an int

means that we are extending the int type.

We can simply use dot notation (.) to reference the method, like this:

int x = 591;

Console.WriteLine("x.Negate {0}", x.Negate());

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 86

● Notice that we do not need to reference the Util class anywhere in the statement that calls

the Negate method.

● The C# compiler automatically detects all extension methods for a given type from all the

static classes that are in scope.

● We can also invoke the Util.Negate method passing an int as the parameter, using the

regular syntax that we have seen before, although this use obviates the purpose of

defining the method as an extension method:

int x = 591;

Console.WriteLine("x.Negate {0}", Util.Negate(x));

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 87

MODULE 3 [CHAPTER 3]

Creating interfaces and defining abstract classes

Understanding interfaces

● If we want to define a new class in which we can store collections of objects, like an

array.

● The collection should enable the application to retrieve objects in numerical order.

● When we define the collection class, we do not want to restrict the types of objects that it

can hold (the objects can even be class or structure types), and consequently we don’t

know how to order these objects.

● The question therefore is how do we provide a method in the collection class that sorts

objects whose types we do not know when we actually write the collection class?

● There is no inheritance relationship between the collection class and the objects that it

holds, so a virtual method would not be of much use.

● The solution, therefore, is to require that all the objects provide a method, such as the

CompareTo method shown in the following example that the RetrieveInOrder method of

the collection can call, making it possible for the collection to compare these objects with

one another:

● int CompareTo(object obj)

{

 // return 0 if this instance is equal to obj

 // return < 0 if this instance is less than obj

 // return > 0 if this instance is greater than obj

 ...

}

We can define an interface for collectable objects that includes the CompareTo method.

● An interface is similar to a contract.

● If a class implements an interface, the interface guarantees that the class contains all the

methods specified in the interface.

● This mechanism ensures that we are able to call the CompareTo method on all objects in

the collection and sort them.

❖ Using interfaces, we can truly separate the “what” from the “how.”

❖ The interface gives us only the name, return type, and parameters of the method.

❖ Exactly how the method is implemented is not a concern of the interface.

❖ The interface describes the functionality that a class should provide but not how this

functionality is implemented.

Defining an interface

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 88

● Defining an interface is syntactically similar to defining a class, except that we use the

interface keyword instead of the class keyword.

● Within the interface, we declare methods exactly as in a class or a structure, except that

we never specify an access modifier (public, private, or protected).

● Additionally, the methods in an interface have no implementation; they are simply

declarations, and all types that implement the interface must provide their own

implementations.

● Consequently, we replace the method body with a semicolon (only prototypes). For

example:

interface IComparable

{

 int CompareTo(object obj);

}

An interface cannot contain any data; we cannot add fields (not even private ones) to an

interface.

Implementing an interface

● To implement an interface, we declare a class or structure that inherits from the interface

and that implements all the methods specified by the interface.

● This is not really inheritance as such; although the syntax is the same and some of the

semantics.

● We should note that unlike class inheritance, a struct can implement an interface.

For example, suppose that we are defining the Mammal hierarchy as land-bound mammals and

provide a method named NumberOfLegs that returns as an int the number of legs that a mammal

has. We can define the ILandBound interface that contains this method, as follows:

 interface ILandBound

{

 int NumberOfLegs();

}

We can then implement this interface in the Horse class and provide an implementation of every

method defined by the interface.

 class Horse : ILandBound

{

 ...

 public int NumberOfLegs()

 {

 return 4;

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 89

 }

}

When we implement an interface, we must ensure that each method matches its corresponding

interface method exactly, according to the following rules:

● The method names and return types match exactly.

● Any parameters (including ref and out keyword modifiers) match exactly.

● All methods implementing an interface must be publicly accessible. However, if we are

using an explicit interface implementation, the method should not have an access

qualifier.

NOTE: If there is any difference between the interface definition and its declared

implementation, the class will not compile.

A class can inherit from another class and implement an interface at the same time. In this case,

C# uses a positional notation. The base class is always named first, followed by a comma,

followed by the interface. The following example defines Horse as a class that is a Mammal but

that additionally implements the ILandBound interface:

 interface ILandBound

{

 ...

}

class Mammal

{

 ...

}

class Horse : Mammal , ILandBound

{

 ...

}

Referencing a class through its interface

We can reference an object by using a variable defined as a class that is higher up the hierarchy,

we can reference an object by using a variable defined as an interface that its class implements.

For example: we can reference a Horse object by using an ILandBound variable, as follows:

 Horse myHorse = new Horse(...);

ILandBound iMyHorse = myHorse; // legal

● This works because all horses are land-bound mammals, although the converse is not true

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 90

● We cannot assign an ILandBound object to a Horse variable without casting it first.

This technique is useful because we can use it to define methods that can take different types as

parameters, as long as the types implement a specified interface. For example,

 int FindLandSpeed(ILandBound landBoundMammal)

{

 ...

}

We use the is operator to determine whether an object has a specified type, and it works with

interfaces as well as classes and structs. For example,

 if (myHorse is ILandBound)

{

 ILandBound iLandBoundAnimal = myHorse;

}

NOTE: When referencing an object through an interface, we can invoke only methods that are

visible through the interface.

Working with multiple interfaces

● A class can have at most one base class.

● But it is allowed to implement an unlimited number of interfaces. A class must

implement all the methods declared by these interfaces.

If a structure or class implements more than one interface, we specify the interfaces as a comma-

separated list. If a class also has a base class, the interfaces are listed after the base class, like

this:

 class Horse : Mammal, ILandBound, IGrazable

{

 ...

}

Explicitly implementing an interface

The examples so far have shown classes that implicitly implement an interface. If we revisit the

ILandBound interface and the Horse class, although the Horse class implements from the

ILandBound interface, there is nothing in the implementation of the NumberOfLegs method in

the Horse class that says it is part of the ILandBound interface:

 interface ILandBound

{

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 91

 int NumberOfLegs();

}

class Horse : ILandBound

{

 ...

 public int NumberOfLegs()

 {

 return 4;

 }

}

There is nothing to prevent multiple interfaces from specifying a method with the same name,

although they might have different semantics. For example,

 interface IJourney

{

int NumberOfLegs();

 }

Now, if we implement this interface in the Horse class, we have an interesting problem:

 class Horse : ILandBound, IJourney

{

 ...

 public int NumberOfLegs()

 {

 return 4;

}

}

This is legal code. By default, C# does not distinguish which interface the method is

implementing, so the same method actually implements both interfaces.

To solve this problem and disambiguate which method is part of which interface implementation,

we can implement interfaces explicitly. To do this, we specify which interface a method belongs

to when we implement it, like this:

class Horse : ILandBound, IJourney

{

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 92

 ...

 int ILandBound.NumberOfLegs()

 {

 return 4;

 }

 int IJourney.NumberOfLegs()

 {

 return 3;

 }

}

Now, we can see that the horse has four legs and has pulled the coach for three legs of the

journey.

❖ Apart from prefixing the name of the method with the interface name, there is one other

subtle difference in this syntax: The methods are not marked as public. We cannot

specify the protection for methods that are part of an explicit interface implementation.

❖ This leads to another interesting phenomenon. If we create a Horse variable in code, we

cannot actually invoke either of the NumberOfLegs methods, because they are not

visible. As far as the Horse class is concerned, they are both private.

Horse horse = new Horse();

...

int legs = horse.NumberOfLegs();

To access the methods we reference the Horse object through the appropriate interface, like this:

Horse horse = new Horse();

...

IJourney journeyHorse = horse;

int legsInJourney = journeyHorse.NumberOfLegs();

ILandBound landBoundHorse = horse;

int legsOnHorse = landBoundHorse.NumberOfLegs();

Interface restrictions

The essential idea to remember is that an interface never contains any implementation. The

following restrictions are natural consequences of this:

❖ We’re not allowed to define any fields in an interface, not even static fields.

❖ We’re not allowed to define any constructors in an interface.

❖ We’re not allowed to define a destructor in an interface. A destructor contains the

statements used to destroy an object instance.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 93

❖ We cannot specify an access modifier for any method. All methods in an interface are

implicitly public.

❖ We cannot nest any types (such as enumerations, structures, classes, or interfaces) inside

an interface.

❖ An interface is not allowed to inherit from a structure or a class, although an interface can

inherit from another interface.

Abstract classes

We can implement the ILandBound and IGrazable interfaces in many different classes,

depending on how many different types of mammals we want to model in our application. In

these situations, it’s common for parts of the derived classes to share common implementations.

For example, the duplication in the following two classes is obvious:

class Horse : Mammal, ILandBound, IGrazable

{

 ...

 void IGrazable.ChewGrass()

 {

 Console.WriteLine("Chewing grass");

 // code for chewing grass

};

}

class Sheep : Mammal, ILandBound, IGrazable

{

 ...

 void IGrazable.ChewGrass()

 {

 Console.WriteLine("Chewing grass");

 // same code as horse for chewing grass

 };

}

● Duplication in code is a warning sign.

● If possible, we should refactor the code to avoid this duplication and reduce any

associated maintenance costs.

● One way to achieve this refactoring is to put the common implementation into a new

class created specifically for this purpose. We can insert a new class into the class

hierarchy, For example:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 94

class GrazingMammal : Mammal, IGrazable

{

 ...

 void IGrazable.ChewGrass()

 {

 // common code for chewing grass

 Console.WriteLine("Chewing grass");

 }

}

 class Horse : GrazingMammal, ILandBound

{

 ...

}

class Sheep : GrazingMammal, ILandBound

{

 ...

}

To declare that creating instances of a class is not allowed, we can declare that the class is

abstract by using the abstract keyword, For example:

 abstract class GrazingMammal : Mammal, IGrazable

{

 ...

}

If we now try to instantiate a GrazingMammal object, the code will not compile:

GrazingMammal myGrazingMammal = new GrazingMammal(...); // illegal

Abstract methods

● An abstract class can contain abstract methods. An abstract method is similar in principle

to a virtual method, except that it does not contain a method body.

● A derived class must override this method.

● The following example defines the DigestGrass method in the GrazingMammal class as

an abstract method; grazing mammals might use the same code for chewing grass, but

they must provide their own implementation of the DigestGrass method.

● An abstract method is useful if it does not make sense to provide a default

implementation in the abstract class but you want to ensure that an inheriting class

provides its own implementation of that method.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 95

abstract class GrazingMammal : Mammal, IGrazable

{

 abstract void DigestGrass();

 ...

}

Sealed classes

We can use the sealed keyword to prevent a class from being used as a base class if we decide

that it should not be. For example:

sealed class Horse : GrazingMammal, ILandBound

{

 ...

}

If any class attempts to use Horse as a base class, a compile-time error will be generated. Note

that a sealed class cannot declare any virtual methods and that an abstract class cannot be sealed.

Sealed methods

❖ We can also use the sealed keyword to declare that an individual method in an unsealed

class is sealed.

❖ This means that a derived class cannot override this method.

❖ We can seal only an override method, and we declare the method as sealed override.

We can think of the interface, virtual, override, and sealed keywords as follows:

● An interface introduces the name of a method.

● A virtual method is the first implementation of a method.

● An override method is another implementation of a method.

● A sealed method is the last implementation of a method.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 96

MODULE 3[CHAPTER 4]

Using garbage collection and resource management

The life and times of an object

First, let’s see what happens when we create an object. We create an object by using the new

operator. The following example creates a new instance of the Square class.

 Square mySquare = new Square(); // Square is a reference type

According to us, the new operation is a single operation, but underneath, object creation is really

a two-phase process:

1. The new operation allocates a chunk of raw memory from the heap. We have no control over

this phase of an object’s creation.

2. The new operation converts the chunk of raw memory to an object; it has to initialize the

object. We can control this phase by using a constructor.

After we have created an object, we can access its members by using the dot operator (.). For

example, the Square class includes a method named Draw that we can call:

mySquare.Draw();

When the mySquare variable goes out of scope, the Square object is no longer being actively

referenced, and the object can be destroyed and the memory that it is using can be reclaimed.

 Like object creation, object destruction is a two-phase process. The two phases of destruction

exactly mirror the two phases of creation:

1. The Common Language Runtime (CLR) must perform some tidying up. We can control this

by writing a destructor.

 2. The CLR must return the memory previously belonging to the object back to the heap; the

memory that the object lived in must be deallocated. We have no control over this phase.

The process of destroying an object and returning memory back to the heap is known as

garbage collection.

Writing destructors

We can use a destructor to perform any tidying up required when an object is garbage collected.

The CLR will automatically clear up any managed resources that an object uses. A destructor is a

special method, a little like a constructor, except that the CLR calls it after the reference to an

object has disappeared. The syntax for writing a destructor is a tilde (~) followed by the name of

the class. For example:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 97

class FileProcessor

{

 FileStream file = null;

 public FileProcessor(string fileName)

 {

 this.file = File.OpenRead(fileName); // open file for reading

 }

 ~FileProcessor()

 {

 this.file.Close(); // close file

 }

}

There are some very important restrictions that apply to destructors:

● Destructors apply only to reference types; we cannot declare a destructor in a value type,

such as a struct.

struct MyStruct

{

 ~ MyStruct() { ... } // compile-time error

}

● We cannot specify an access modifier (such as public) for a destructor. We never call the

destructor in our own code; part of the CLR called the garbage collector does this for us.

● public ~ FileProcessor() { ... } // compile-time error

● A destructor cannot take any parameters. Again, this is because we never call the

destructor ourselves.

~ FileProcessor(int parameter) { ... } // compile-time error

Internally, the C# compiler automatically translates a destructor into an override of the

Object.Finalize method. The compiler converts this destructor

class FileProcessor

{

 ~ FileProcessor() { // your code goes here }

}

into this:

class FileProcessor

{

 protected override void Finalize()

 {

 try { // your code goes here }

 finally { base.Finalize(); }

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 98

 }

}

It’s important to understand that only the compiler can make this translation. We can’t write our

own method to override Finalize, and we can’t call Finalize ourselves.

Why use the garbage collector?

We can never destroy an object ourselves by using C# code. There just isn’t any syntax to do it.

Instead, the CLR does it for us at a time of its own choosing. In addition, keep in mind that we

can also make more than one reference variable refer to the same object.

 FileProcessor myFp = new FileProcessor();

FileProcessor referenceToMyFp = myFp;

An object can be destroyed and its memory made available for reuse only when all the references

to it have disappeared.

If it was our responsibility to destroy objects, sooner or later one of the following situations

would arise:

● We would forget to destroy the object.

● We would try to destroy an active object and risk the possibility of one or more variables

holding a reference to a destroyed object, known as a dangling reference.

● We would try to destroy the same object more than once. This might or might not be

disastrous, depending on the code in the destructor.

The garbage collector makes the following guarantees:

● Every object will be destroyed, and its destructor will be run. When a program ends, all

outstanding objects will be destroyed.

● Every object will be destroyed exactly once.

● Every object will be destroyed only when it becomes unreachable—that is, when there

are no references to the object in the process running our application.

When does garbage collection occur?

This garbage collection occurs when an object is no longer needed. Garbage collection can be an

expensive process, so the CLR collects garbage only when it needs to and then it collects as

much as it can. Performing a few large sweeps of memory is more efficient than performing lots

of little dustings.

One feature of the garbage collector is that we don’t know, and should not rely upon, the order in

which objects will be destroyed. The final point to understand is arguably the most important:

Destructors do not run until objects are garbage collected.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 99

How does the garbage collector work?

The garbage collector runs in its own thread and can execute only at certain times—typically,

when our application reaches the end of a method. While it runs, other threads running in our

application will temporarily halt. This is because the garbage collector might need to move

objects around and update object references, and it cannot do this while objects are in use.

The steps that the garbage collector takes are as follows:

1. It builds a map of all reachable objects. It does this by repeatedly following reference fields

inside objects. The garbage collector builds this map very carefully and ensures that circular

references do not cause an infinite recursion. Any object not in this map is deemed to be

unreachable.

2. It checks whether any of the unreachable objects has a destructor that needs to be run (a

process called finalization). Any unreachable object that requires finalization is placed in a

special queue called the freachable queue (pronounced “F-reachable”).

3. It deallocates the remaining unreachable objects (those that don’t require finalization) by

moving the reachable objects down the heap, thus defragmenting the heap and freeing memory at

its top. When the garbage collector moves a reachable object, it also updates any references to

the object.

4. At this point, it allows other threads to resume.

5. It finalizes the unreachable objects that require finalization (now in the freachable queue) by

running the Finalize methods on its own thread.

Recommendations

Writing classes that contain destructors adds complexity to our code and to the garbage

collection process, and makes our program run more slowly. Therefore, try to avoid using

destructors except when we really need them; only use them to reclaim unmanaged resources.

 We need to be very careful when we write a destructor. In particular, be aware that, if our

destructor calls other objects, those other objects might have already had their destructor called

by the garbage collector. Remember that the order of finalization is not guaranteed. Therefore,

ensure that destructors do not depend on one another or overlap one another—don’t have two

destructors that try to release the same resource.

Resource management

Sometimes, it’s inadvisable to release a resource in a destructor; some resources are just too

valuable to lie around waiting for an arbitrary length of time until the garbage collector actually

releases them. Scarce resources such as memory, database connections, or file handles need to be

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 100

released, and they need to be released as soon as possible. In these situations, our only option is

to release the resource ourselves. We can achieve this by creating a disposal method.

● A disposal method is a method that explicitly disposes of a resource. If a class has a

disposal method, you can call it and control when the resource is released.

Disposal methods

An example of a class that implements a disposal method is the TextReader class from the

System.IO namespace. This class provides a mechanism to read characters from a sequential

stream of input. Here’s an example that reads lines of text from a file by using the StreamReader

class and then displays them on the screen:

 TextReader reader = new StreamReader(filename);

string line;

while ((line = reader.ReadLine()) != null)

{

 Console.WriteLine(line);

}

reader.Close();

The ReadLine method reads the next line of text from the stream into a string. The ReadLine

method returns null if there is nothing left in the stream. It’s important to call Close when we

have finished. However, there is a problem with this example: it’s not exception-safe. If the call

to ReadLine or WriteLine throws an exception, the call to Close will not happen; it will be

bypassed. If this happens often enough, we will run out of file handles and be unable to open any

more files.

Exception-safe disposal

One way to ensure that a disposal method (such as Close) is always called, regardless of whether

there is an exception, is to call the disposal method within a finally block. For example:

 TextReader reader = new StreamReader(filename);

try

{

 string line;

 while ((line = reader.ReadLine()) != null)

 {

 Console.WriteLine(line);

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 101

}

 }

finally

{

 reader.Close();

}

Using a finally block like this works, but it has several drawbacks that make it a less-than-ideal

solution:

● It quickly becomes unwieldy if we have to dispose of more than one resource.

● We might need to modify the code to make it fit this idiom. (For example, you might

need to reorder the declaration of the resource reference).

● It fails to create an abstraction of the solution. This means that the solution is hard to

understand and we must repeat the code everywhere we need this functionality.

● The reference to the resource remains in scope after the finally block. This means that we

can accidentally try to use the resource after it has been released.

The using statement is designed to solve all these problems. The using statement provides a clean

mechanism for controlling the lifetimes of resources. We can create an object, and this object

will be destroyed when the using statement block finishes.

The syntax for a using statement is as follows:

using (type variable = initialization)

{

 StatementBlock

}

Here is the best way to ensure that your code always calls Close on a TextReader:

using (TextReader reader = new StreamReader(filename))

{

 string line;

 while ((line = reader.ReadLine()) != null)

 {

 Console.WriteLine(line);

}

 }

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 102

This using statement is precisely equivalent to the following transformation:

{

 TextReader reader = new StreamReader(filename);

 try

 {

 string line;

 while ((line = reader.ReadLine()) != null)

 {

 Console.WriteLine(line);

 }

}

 finally

 {

 if (reader != null)

 {

 ((IDisposable)reader).Dispose();

 }

 }

}

The variable we declare in a using statement must be of a type that implements the IDisposable

interface. The IDisposable interface lives in the System namespace and contains just one method,

named Dispose:

namespace

System

 {

 interface

IDisposable

 {

 void

Dispose();

 }

}

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 103

The purpose of the Dispose method is to free any resources used by an object. We can employ a

using statement as a clean, exception-safe, and robust way to ensure that a resource is always

released. This approach solves all of the problems that existed in the manual try/finally solution.

We now have a solution that

● Scales well if we need to dispose of multiple resources.

● Doesn’t distort the logic of the program code.

● Abstracts away the problem and avoids repetition.

● Is robust. We can’t accidentally reference the variable declared within the using

statement, after the using statement has ended because it’s not in scope anymore—we’ll

get a compile-time error.

Calling the Dispose method from a destructor

A call to a destructor will happen, but we just don’t know when. On the other hand, we know

exactly when a call to the Dispose method happens, but we just can’t be sure that it will actually

happen, because it relies on the programmer using our classes remembering to write a using

statement. However, it is possible to ensure that the Dispose method always runs by calling it

from the destructor. This acts as a useful backup. You might forget to call the Dispose method,

but at least we can be sure that it will be called, even if it’s only when the program shuts down.

class Example : IDisposable

{

 private Resource scarce; // scarce resource to manage and dispose

_ private bool disposed = false; // flag to indicate whether the resource

 // has already been disposed

 ...

 ~Example()

 {

 this.Dispose(false);

 }

 public virtual void Dispose()

 {

 this.Dispose(true);

 GC.SuppressFinalize(this);

 }

 protected virtual void Dispose(bool disposing)

 {

 if (!this.disposed)

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 104

 {

 if (disposing)

 {

 // release large, managed resource here

 ...

 }

 // release unmanaged resources here

 ...

 this.disposed = true;

 }

 }

 public void SomeBehavior() // example method

 {

 checkIfDisposed();

 ...

 }

 ...

 private void checkIfDisposed()

 {

 if (this.disposed)

 {

 throw new ObjectDisposedException("Example: object has been disposed

of"); }

 }

}

Notice the following features of the Example class:

● The class implements the IDisposable interface.

● The public Dispose method can be called at any time by our application code.

● The public Dispose method calls the protected and overloaded version of the Dispose

method that takes a Boolean parameter, passing the value true as the argument. This

method actually performs the resource disposal.

● The destructor calls the protected and overloaded version of the Dispose method that

takes a Boolean parameter, passing the value false as the argument. The destructor is

called only by the garbage collector, when your object is being finalized.

● We can call the protected Dispose method safely multiple times. The variable disposed

indicates whether the method has already been run and is a safety feature to prevent the

method from attempting to dispose the resources multiple times if it is called

concurrently. The resources are released only the first time the method runs.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 105

● The protected Dispose method supports disposal of managed resources (such as a large

array) and unmanaged resources (such as a file handle). If the disposing parameter is true,

this method must have been called from the public Dispose method. In this case, the

managed resources and unmanaged resources are all released. If the disposing parameter

is false, this method must have been called from the destructor, and the garbage collector

is finalizing the object. In this case, it is not necessary (or exception-safe) to release the

managed resources, because they will be, or might already have been, handled by the

garbage collector, so only the unmanaged resources are released.

● The public Dispose method calls the static GC.SuppressFinalize method. This method

stops the garbage collector from calling the destructor on this object, because the object

has already been finalized.

● All the regular methods of the class (such as SomeBehavior) check to see whether the

object has already been discarded. If it has, they throw an exception.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 106

MODULE 4 [CHAPTER 1]

Implementing properties to access fields

Implementing encapsulation by using methods

First, will see the original motivation for using methods to hide fields.

 Consider the following structure that represents a position on a computer screen as a pair

of coordinates, x and y. Assume that the range of valid values for the x-coordinate lies

between 0 and 1280, and the range of valid values for the y-coordinate lies between 0 and

1024.

struct ScreenPosition

{

public int X; public int Y;

public ScreenPosition(int x, int y)

{

this.X = rangeCheckedX(x);

this.Y = rangeCheckedY(y);

}

private static int rangeCheckedX(int x)

{

if (x < 0 || x > 1280)

{

throw new ArgumentOutOfRangeException(“X”);

}

return x;

}

private static int rangeCheckedY(int y)

{

if (y < 0 || y > 1024)

{

throw new ArgumentOutOfRangeException(“Y”);

}

return y;

} }

 One problem with this structure is that it does not follow the golden rule of

encapsulation—that is, it does not keep its data private. Public data is often a bad idea

because the class cannot control the values that an application specifies.

 For example, the ScreenPosition constructor range checks its parameters to ensure that

they are in a specified range, but no such check can be done on the “raw” access to the

public fields.

ScreenPosition origin = new ScreenPosition(0, 0);

...

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 107

int xpos = origin.X;

origin.Y = -100; // oops

 The common way to solve this problem is to make the fields private and add an accessor

method and a modifier method to respectively read and write the value of each private

field.

struct ScreenPosition

{

...

public int GetX()

{

return this.x;

}

public void SetX(int newX)

{

 this.x = rangeCheckedX(newX);

}

...

private static int rangeCheckedX(int x) { ... }

private static int rangeCheckedY(int y) { ... }

private int x, y;

}

What are properties?

A property is a cross between a field and a method—it looks like a field but acts like a method.

You access a property by using exactly the same syntax that you use to access a field.

The syntax for a property declaration looks like this:

AccessModifier Type PropertyName

{

Get

 {

 // read accessor code

}

set

{

 // write accessor code

 }

}

 A property can contain two blocks of code, starting with the get and set keywords. The

get block contains statements that execute when the property is read, and the set block

contains statements that run upon writing to the property. The type of the property

specifies the type of data read and written by the get and set accessors.

 The next code example shows the ScreenPosition structure rewritten by using properties.

When looking at this code, notice the following:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 108

 Lowercase _x and _y are private fields.

 Uppercase X and Y are public properties.

 All set accessors are passed the data to be written by using a hidden, built-in

parameter named value.

struct ScreenPosition

{

private int _x, _y;

public ScreenPosition(int X, int Y)

 {

this._x = rangeCheckedX(X);

 this._y = rangeCheckedY(Y);

 }

 public int X

 {

get { return this._x; }

set { this._x = rangeCheckedX(value);

 }

 }

public int Y

 {

get { return this._y; }

set { this._y = rangeCheckedY(value);

 }

 }

private static int rangeCheckedX(int x) { ... }

private static int rangeCheckedY(int y) { ... }

}

 In this example, a private field directly implements each property, but this is only one

way to implement a property. All that is required is that a get accessor returns a value of

the specified type.

 When you use a property in an expression, you can use it in a read context (when you are

retrieving its value) and in a write context (when you are modifying its value). The

following example shows how to read values from the X and Y properties of the

ScreenPosition structure:

ScreenPosition origin = new ScreenPosition(0, 0);

int xpos = origin.X; // calls origin.X.get

int ypos = origin.Y; // calls origin.Y.get

 Notice that you access properties and fields by using identical syntax. When you use a

property in a read context, the compiler automatically translates your field-like code into

a call to the get accessor of that property.

 Similarly, if you use a property in a write context, the compiler automatically translates

your field-like code into a call to the set accessor of that property.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 109

origin.X = 40; // calls origin.X.set, with value set to 40origin.

Y = 100; // calls origin.Y.Set, with value set to 100

Read-only properties

 You can declare a property that contains only a get accessor. In this case, you can use the

property only in a read context. For example, here’s the X property of the ScreenPosition

structure declared as a read-only property:

struct ScreenPosition

{

 private int _x;

 ...

public int X

{

get { return this._x; }

 }

}

 The X property does not contain a set accessor; therefore, any attempt to use X in a write

context will fail, as demonstrated in the following example:

origin.X = 140; // compile-time error

Write-only properties

 Similarly, you can declare a property that contains only a set accessor. In this case, you

can use the property only in a write context. For example, here’s the X property of the

ScreenPosition structure declared as a write-only property:

struct ScreenPosition

{

private int _x;

 ...

 public int X

 {

Set { this._x = rangeCheckedX(value); }

}}

The X property does not contain a get accessor; any attempt to use X in a read context will fail, as

illustrated here:

Console.WriteLine(origin.X); // compile-time error

origin.X = 200; // compiles OK

origin.X += 10; // compile-time error

Property accessibility

 You can specify the accessibility of a property (public, private, or protected) when you

declare it. However, it is possible within the property declaration to override the property

accessibility for the get and set accessors.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 110

 For example, the version of the ScreenPosition structure shown in the code that follows

defines the set accessors of the X and Y properties as private. (The get accessors are

public, because the properties are public.)

struct ScreenPosition

{

private int _x, _y;

 ...

public int X

 {

 get { return this._x; }

 private set { this._x = rangeCheckedX(value); }

}

public int Y

 {

get { return this._y; }

private set { this._y = rangeCheckedY(value); }

 }

...}

You must observe some rules when defining accessors with different accessibility from one

another:

 You can change the accessibility of only one of the accessors when you define it. It

wouldn’t make much sense to define a property as public only to change the accessibility

of both accessors to private anyway.

 The modifier must not specify an accessibility that is less restrictive than that of the

property. For example, if the property is declared as private, you cannot specify the read

accessor as public. (Instead, you would make the property public and make the write

accessor private.)

Understanding the property restrictions

 You can assign a value through a property of a structure or class only after the structure

or class has been initialized. The following code example is illegal because the location

variable has not been initialized (by using new):

ScreenPosition location;

location.X = 40; // compile-time error, location not assigned

 You can’t use a property as a ref or an out argument to a method (although you can use a

writable field as a ref or an out argument). This makes sense because the property doesn’t

really point to a memory location; rather, it points to an accessor method, such as in the

following example:

MyMethod(ref location.X); // compile-time error

 A property can contain at most one get accessor and one set accessor. A property cannot

contain other methods, fields, or properties.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 111

 The get and set accessors cannot take any parameters. The data being assigned is passed

to the set accessor automatically by using the value variable.

 You can’t declare const properties, such as is demonstrated here:

const int X { get { ... } set { ... } } // compile-time error

Declaring interface properties

 We specify the get or set keyword, or both, but replace the body of the get or set accessor

with a semicolon, as shown here:

interface IScreenPosition

{

int X { get; set; } int Y { get; set; }

 }

 Any class or structure that implements this interface must implement the X and Y

properties with get and set accessor methods.

struct ScreenPosition : IScreenPosition

{ ...

public int X { get { ... } set { ... } }

public int Y { get { ... } set { ... } }

 ...}

 If you implement the interface properties in a class, you can declare the property

implementations as virtual, which enables derived classes to override the

implementations.

class ScreenPosition : IScreenPosition

{ ...

public virtual int X { get { ... } set { ... } }

 public virtual int Y { get { ... } set { ... } }

}

 You can also choose to implement a property by using the explicit interface

implementation

struct ScreenPosition : IScreenPosition

{ ...

 int IScreenPosition.X { get { ... } set { ... } }

 int IScreenPosition.Y { get { ... } set { ... } }

... }

Generating automatic properties

 The principal purpose of properties is to hide the implementation of fields from the

outside world. However, there are at least two good reasons why you should define

properties rather than exposing data as public fields even in these situations:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 112

 Compatibility with applications Fields and properties expose themselves by using

different metadata in assemblies. If you develop a class and decide to use public fields,

any applications that use this class will reference these items as fields. Although you use

the same C# syntax for reading and writing a field that you use when reading and writing

a property, the compiled code is actually quite different—the C# compiler just hides the

differences from you. If you later decide that you really do need to change these fields to

properties, existing applications will not be able to use the updated version of the class

without being recompiled. This is awkward if you have deployed the application on a

large number of users’ desktops throughout an organization.

 Compatibility with interfaces If you are implementing an item as a property, you must

write a property that matches the specification in the interface, even if the property just

reads and writes data in a private field.

 The designers of the C# language recognized that programmers are busy people who

should not have to waste their time writing more code than they need to. To this end, the

C# compiler can generate the code for properties for you automatically, like this:

class Circle

{

public int Radius{ get; set; }

 ...}

 The C# compiler converts this definition to a private field and a default implementation

that looks similar to this:

class Circle

{

private int _radius;

public int Radius

{

get { return this._radius; }

set { this._radius = value; }

}

 ...}

 We can implement a simple property by using automatically generated code, and if you

need to include additional logic later, you can do so without breaking any existing

applications.

Initializing objects by using properties

 Object initializing using contractor: An object can have multiple constructors, and you

can define constructors with varying parameters to initialize different elements in an

object. For example, you could define a class that models a triangle, like this:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 113

public class Triangle

{

private int side1Length; private int side2Length; private int side3Length;

public Triangle()

{

 this.side1Length = this.side2Length = this.side3Length = 10;

}

public Triangle(int length1)

{

 this.side1Length = length1; this.side2Length = this.side3Length = 10;

 }

public Triangle(int length1, int length2)

{

this.side1Length = length1; this.side2Length = length2; this.side3Length = 10;

}

public Triangle(int length1, int length2, int length3)

{

this.side1Length = length1; this.side2Length = length2; this.side3Length =

length3;

}

}

 Problem with constructor :For example, in the preceding Triangle class, you could not

easily add a constructor that initializes only the side1Length and side3Length fields

because it would not have a unique signature;

 One possible solution is to define a constructor that takes optional parameters and

specify values for the parameters as named arguments when you create a Triangle

object.

 Another transparent solution is to initialize the private fields to a set of default values

and expose them as properties, like this:

public class Triangle

{

private int side1Length = 10;

 private int side2Length = 10;

private int side3Length = 10;

 public int Side1Length { set { this.side1Length = value; } }

public int Side2Length { set { this.side2Length = value; } }

public int Side3Length { set { this.side3Length = value; } }

}

 When we create an instance of a class, you can initialize it by specifying the names and

values for any public properties that have set accessors.

Triangle tri1 = new Triangle { Side3Length = 15 };

Triangle tri2 = new Triangle { Side1Length = 15, Side3Length = 20 };

Triangle tri3 = new Triangle { Side2Length = 12, Side3Length = 17 };

Triangle tri4 = new Triangle { Side1Length = 9, Side2Length = 12, Side3Length = 15 };

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 114

Using indexers[Chapter 2]

What is an indexer?

 We can think of an indexer as a smart array in much the same way that you can think of a

property as a smart field. Whereas a property encapsulates a single value in a class, an indexer

encapsulates a set of values. The syntax that you use for an indexer is exactly the same as the

syntax that you use for an array.

The best way to understand indexers is to work through an example.

An example that doesn’t use indexers

 C# provides a set of operators that you can use to access and manipulate the individual

bits in an int. These operators are as follows:

 The NOT (~) operator This is a unary operator that performs a bitwise complement. For

example, if you take the 8-bit value 11001100 (204 decimal) and apply the ~ operator to

it, you obtain the result 00110011 (51 decimal)—all the 1s in the original value become

0s, and all the 0s become 1s.

 The left-shift (<<) operator This is a binary operator that performs a left shift. The

expression 204 << 2 returns the value 48. (In binary, 204 decimal is 11001100, and left-

shifting it by two places yields 00110000, or 48 decimal.) The far-left bits are discarded,

and zeros are introduced from the right. There is a corresponding right-shift operator, >>.

 The OR (|) operator This is a binary operator that performs a bitwise OR operation,

returning a value containing a 1 in each position in which either of the operands has a 1.

For example, the expression 204 | 24 has the value 220 (204 is 11001100, 24 is

00011000, and 220 is 11011100).

 The AND (&) operator This operator performs a bitwise AND operation. AND is

similar to the bitwise OR operator, except that it returns a value containing a 1 in each

position where both of the operands have a 1. So, 204 & 24 is 8 (204 is 11001100, 24 is

00011000, and 8 is 00001000).

 The XOR (^) operator This operator performs a bitwise exclusive OR operation, return-

ing a 1 in each bit where there is a 1 in one operand or the other but not both. (Two 1s

yield a 0—this is the “exclusive” part of the operator.) So 204 ^ 24 is 212 (11001100 ^

00011000 is 11010100).

 (bits & (1 << 5)) != 0

Suppose that the bits variable contains the decimal value 42. In binary, this is 00101010.

The decimal value 1 is 00000001 in binary, and the expression 1 << 5 has the value

00100000; the sixth bit is 1. In binary, the expression bits & (1 << 5) is 00101010 &

00100000, and the value of this expression is binary 00100000, which is nonzero. If the

variable bits contains the value 65,

 The trouble with these examples is that although they work, they are fiendishly difficult

to understand. They’re complicated, and the solution is a very low-level one: it fails to

create an abstraction of the problem that it solves, and it is consequently very difficult to

maintain code that performs these kinds of operations.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 115

The same example using indexers

 The best way to solve above problem is to use an int as if it were an array of bits.

Eq:

bits[5] // access the bit 6 places from the right in the bits variable

bits[3] = true // set the bit 4 places from the right to true

 We can’t use the square bracket notation on an int; it works only on an array or on a type

that behaves like an array. So, the solution to the problem is to create a new type that acts

like, feels like, and is used like an array of bool variables but is implemented by using an

int. You can achieve this feat by defining an indexer.

struct IntBits

{ private int bits;

public IntBits(int initialBitValue)

{ bits = initialBitValue; }
 }

 To define the indexer, you use a notation that is a cross between a property and an array.

You introduce the indexer with the this keyword, specify the type of the value returned

by the indexer, and also specify the type of the value to use as the index into the indexer

between square brackets.

public bool this [int index]

{

get

{

return (bits & (1 << index)) != 0;

}

set

{

 if (value) // turn the bit on if value is true; otherwise, turn it off

bits |= (1 << index);

else

 bits &= ~(1 << index);

}

}

Notice the following points:

 An indexer is not a method; there are no parentheses containing a parameter, but there are

square brackets that specify an index. This index is used to specify which element is

being accessed.

 All indexers use the this keyword. A class or structure can define at most one indexer

and it is always named this.

 Indexers contain get and set accessors just like properties. In this example, the get and set

accessors contain the complicated bitwise expressions previously discussed.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 116

 The index specified in the indexer declaration is populated with the index value specified

when the indexer is called. The get and set accessor methods can read this argument to

determine which element should be accessed.

 After you have declared the indexer, you can use a variable of type IntBits instead of an

int and apply the square bracket notation, as shown in the next example:

int adapted = 126; // 126 has the binary representation 01111110

IntBits bits = new IntBits(adapted);

bool peek = bits[6]; // retrieve bool at index 6; should be true (1)

bits[0] = true; // set the bit at index 0 to true (1)

bits[3] = false; // set the bit at index 3 to false (0)

Understanding indexer accessors

When we read an indexer, the compiler automatically translates your array-like code into a

call to the get accessor of that indexer. Consider the following example:

 bool peek = bits[6]; // call to the get accessor for bits, and the index argument is set to 6.

 bits[3] = true; // call to the set accessor of that indexer, setting the index value to true

 bits[6] ^= true; //This code is automatically translated into the following:

bits[6] = bits[6] ^ true; //calls the indexer declares both a get and a set accessor.

Comparing indexers and arrays

When we use an indexer, the syntax is deliberately array-like. However, there are some

important differences between indexers and arrays:

1. Indexers can use non-numeric subscripts, such as a string as shown in the following

example, whereas arrays can use only integer subscripts.

public int this [string name] { ... } // OK

2. Indexers can be overloaded (just like methods), whereas arrays cannot.

public Name this [PhoneNumber number]

{ ... }

public PhoneNumber this [Name name]

 { ... }

3. Indexers cannot be used as ref or out parameters, whereas array elements can.

IntBits bits; // bits contains an indexerMethod(ref bits[1]); // compile-time error

Indexers in interfaces

 We can declare indexers in an interface. To do this, specify the get keyword, the set

keyword, or both, but replace the body of the get or set accessor with a semicolon. Any

class or structure that implements the interface must implement the indexer accessors

declared in the interface, as demonstrated here:

interface IRawInt

{

bool this [int index] { get; set; }

}

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 117

struct RawInt : IRawInt

{ ...

public bool this [int index]

{ get { ... } set { ... } }

...}

 Implement the interface indexer in a class, we can declare the indexer implementations as

virtual.

class RawInt : IRawInt

{ ...

public virtual bool this [int index]

{ get { ... } set { ... } }

 ...}

 We can also choose to implement an indexer by using the explicit interface

implementation syntax.An explicit implementation of an indexer is nonpublic and

nonvirtual (and so cannot be overridden), as shown in this example:

struct RawInt : IRawInt

{ ...

bool IRawInt.this [int index]

{ get { ... } set { ... } }

 ...}

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 118

MODULE 4[CHAPTER 3]

Introducing generics

The problem with the object type

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 119

 To understand generics, it is worth looking in detail at the problem for which they are

designed to solve. Suppose that we needed to model a first-in, first-out structure such as a

queue. We could create a class such as the above it.

 This class uses an array to provide a circular buffer for holding the data. The size of this

array is specified by the constructor. An application uses the Enqueue method to add an

item to the queue and the Dequeue method to pull an item off the queue. The private head

and tail fields keep track of where to insert an item into the array and where to retrieve an

item from the array. The numElements field indicates how many items are in the array.

 The Queue class works well for queues of ints, but what if Wewant to create queues of

strings, or floats, or even queues of more complex types such as Circle

Queue queue = new Queue();

Horse myHorse = new Horse();

queue.Enqueue(myHorse); // error: Cannot convert from Horse to int

 One way around this restriction is to specify that the array in the Queue class contains

items of type object, update the constructors, and modify the Enqueue and Dequeue

methods to take an object parameter and return an object, such as in the following:

Queue queue = new Queue();

Horse myHorse = new Horse();

queue.Enqueue(myHorse); // Now legal – Horse is an object

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 120

 Disadvantage of using the object approach to create generalized classes and methods is

that it can consume additional memory and processor time if the runtime needs to convert

an object to a value type and back again. Consider the following piece of code that

manipulates a queue of int values:

Queue queue = new Queue();

int myInt = 99;queue.Enqueue(myInt); // box the int to an object

...

myInt = (int)queue.Dequeue(); // unbox the object to an int

 The Queue data type expects the items it holds to be objects, and object is a reference

type. Enqueueing a value type, such as an int, requires it to be boxed to convert it to a

reference type. Similarly, dequeueing into an int requires the item to be unboxed to

convert it back to a value type.

The generics solution

 C# provides generics to remove the need for casting, improve type safety, reduce the

amount of boxing required, and make it easier to create generalized classes and methods.

Generic classes and methods accept type parameters, which specify the types of objects

on which they operate.

class Queue<T>

{

...

}

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 121

The T in this example acts as a placeholder for a real type at compile time. When Wewrite code

to instantiate a generic Queue, Weprovide the type that should be substituted for T (Circle,

Horse, int, and so on).

 The following examples create a Queue of ints, and a Queue of Horses:

Queue<int> intQueue = new Queue<int>();

Queue<Horse> horseQueue = new Queue<Horse>();

 The compiler now has enough information to perform strict type-checking when Webuild

the application. Weno longer need to cast data when we call the Dequeue method, and the

compiler can trap any type mismatch errors early:

intQueue.Enqueue(99);

int myInt = intQueue.Dequeue(); // no casting necessary

Horse myHorse = intQueue.Dequeue(); // compiler error:

// cannot implicitly convert type 'int' to 'Horse'

Generics vs. generalized classes
 It is important to be aware that a generic class that uses type parameters is different from

a generalized class designed to take parameters that can be cast to different types. For

example, the object-based version of the Queue class shown earlier is a generalized class.

 There is a single implementation of this class, and its methods take object parameters and

return object types. Wecan use this class with ints, strings, and many other types, but in

each case, Weare using instances of the same class and Wehave to cast the data Weare

using to and from the object type.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 122

 Compare this with the Queue<T> class. Each time Weuse this class with a type

parameter (such as Queue<int> or Queue<Horse>), Wecause the compiler to generate

an entirely new class that happens to have functionality defined by the generic class.

Generics and constraints

 By using a constraint, Wecan limit the type parameters of a generic class to those that

implement a particular set of interfaces and therefore provide the methods defined by

those interfaces. For example, if the IPrintable interface defined the Print method,

Wecould create the PrintableCollection class like this:

public class PrintableCollection<T> where T : IPrintable

 When Webuild this class with a type parameter, the compiler checks to ensure that the

type used for T actually implements the IPrintable interface; if it doesn’t, it stops with a

compilation error.

Creating a generic method

 Generic methods are frequently used in conjunction with generic classes; we need them

for methods that take generic types as parameters or that have a return type that is a

generic type.

 With a generic method, Wecan specify the types of the parameters and the return type by

using a type parameter in a manner similar to that used when defining a generic class. We

define generic methods by using the same type parameter syntax that Weuse when

creating generic classes. For example, the generic Swap<T> method in the code that

follows swaps the values in its parameters. Because this functionality is useful regardless

of the type of data being swapped, it is helpful to define it as a generic method:

static void Swap<T>(ref T first, ref T second)

{

 T temp = first;

 first = second;

 second = temp;

}

 Invoke the method by specifying the appropriate type for its type parameter. The

following examples show how to invoke the Swap<T> method to swap over two ints and

two strings:

int a = 1, b = 2;

Swap<int>(ref a, ref b);

...string s1 = "Hello", s2 = "World";

Swap<string>(ref s1, ref s2);

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 123

Variance and generic interfaces

 The Wrapper<T> class provides a simple wrapper around a specified type. The

IWrapper interface defines the SetData method that the Wrapper<T> class implements

to store the data and the GetData method that the Wrapper<T> class implements to

retrieve the data.

 we can create an instance of this class and use it to wrap a string like this:

Covariant interfaces

 Suppose that we defined the IStoreWrapper<T> and IRetrieveWrapper<T> interfaces,

shown in the following example, in place of IWrapper<T> and implemented these

interfaces in the Wrapper<T> class, like this:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 124

IRetrieveWrapper<object> retrievedObjectWrapper = stringWrapper; //error

 The compiler does implicit conversions are legal and that it does not have to enforce

strict type-safety. We do this by specifying the out keyword when Wedeclare the type

parameter, like this:

 This feature is called covariance. Wecan assign an IRetrieveWrapper<A> object to an

IRetrieveWrapper reference as long as there is a valid conversion from type A to

type B, or type A derives from type B. The following code now compiles and runs as

expected:

// string derives from object, so this is now legal

IRetrieveWrapper<object> retrievedObjectWrapper = stringWrapper;

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 125

Contravariant interfaces

 Contravariance follows a similar principle to covariance except that it works in the

opposite direction; it enables Weto use a generic interface to reference an object of type B

through a reference to type A as long as type B derives type A. This sounds complicated,

so it is worth looking at an example from the .NET Framework class library.

 The System.Collections.Generic namespace in the .NET Framework provides an interface

called IComparer, which looks like this:

 A class that implements this interface has to define the Compare method, which is used

to compare two objects of the type specified by the T type parameter. The Compare

method is expected to return an integer value: zero if the parameters x and y have the

same value, negative if x is less than y, and positive if x is greater than y.

 We can create an ObjectComparer object and call the Compare method through the

IComparer<Object> interface to compare two objects, like this:

Covariance example If the methods in a generic interface can return strings, they can also return

objects. (All strings are objects.)

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 126

Contravariance example If the methods in a generic interface can take object parameters, they

can take string parameters.

Creating a generic class

The theory of binary trees

 A binary tree is a useful data structure that Wecan use for a variety of operations,

including sorting and searching through data very quickly.

 A binary tree is a recursive (self-referencing) data structure that can either be empty or

contain three elements: a datum, which is typically referred to as the node, and two

subtrees, which are themselves binary trees. The two subtrees are conventionally called

the left subtree and the right subtree because they are typically depicted to the left and

right of the node, respectively.

 Each left subtree or right subtree is either empty or contains a node and other subtrees. In

theory, the whole structure can continue ad infinitum. The following image shows the

structure of a small binary tree.

Binary tree construction

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 127

Binary tree display

C# program for Btree using generic class and method:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 128

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 129

MODULE 4[CHAPTER 4]

Using collections

 The Microsoft .NET Framework provides several classes that collect elements together

such that an application can access them in specialized ways. they live in the

System.Collections.Generic namespace.

 As the namespace implies, these collections are generic types; they all expect We to

provide a type parameter indicating the kind of data that your application will be storing

in them. Each collection class is optimized for a particular form of data storage and

access, and each provides specialized methods that support this functionality.

 For example, the Stack<T> class implements a last-in, first-out model, where We add an

item to the top of the stack by using the Push method, and Wetake an item from the top

of the stack by using the Pop method. The Pop method always retrieves the most recently

pushed item and removes it from the stack. In contrast, the Queue<T> type provides the

Enqueue and Dequeue methods The Enqueue method adds an item to the queue, whereas

the Dequeue method retrieves items in the same order and removes them from the queue.

The List<T> collection class

 The generic List<T> class is the simplest of the collection classes. We can use it much

like an array—We can reference an existing element in a List<T> collection by using

ordinary array notation, with square brackets and the index of the element, although We

cannot use array notation to add new elements. However, in general, the List<T> class

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 130

provides more flexibility than arrays and is designed to overcome the following

restrictions exhibited by arrays:

1) If We want to resize an array, We have to create a new array, copy the elements

(leaving out some if the new array is smaller), and then update any references to the

original array so that they refer to the new array.

2) If We want to remove an element from an array, We have to move all the trailing

elements up by one place. Even this doesn’t quite work, because We end up with two

copies of the last element.

3) If We want to insert an element into an array, We have to move elements down by

one place to make a free slot. However, We lose the last element of the array!

 The List<T> collection class provides the following features that preclude these

limitations:

1) We don’t need to specify the capacity of a List<T> collection when We create it; it

can grow and shrink as We add elements. There is an overhead associated with this

dynamic behavior, and if necessary We can specify an initial size. However, if We

exceed this size, then the List<T> collection will simply grow as necessary.

2)We can remove a specified element from a List<T> collection by using the Remove

method. The List<T> collection automatically reorders its elements and closes the gap.

We can also remove an item at a specified position in a List<T> collection by using the

RemoveAt method.

3) We can add an element to the end of a List<T> collection by using its Add method.

We supply the element to be added. The List<T> collection resizes itself automatically.

4) We can insert an element into the middle of a List<T> collection by using the Insert

method. Again, the List<T> collection resizes itself.

5)We can easily sort the data in a List<T> object by calling the Sort method.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 131

The LinkedList<T> collection class

 The LinkedList<T> collection class implements a doubly linked list. Each item in the list

holds the value for the item together with a reference to the next item in the list (the Next

property) and the previous item (the Previous property). The item at the start of the list

has the Previous property set to null, and the item at the end of the list has the Next

property set to null.

 LinkedList<T> does not support array notation for inserting or examining elements.

Instead, Wecan use the AddFirst method to insert an element at the start of the list,

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 132

moving the first item up and setting its Previous property to refer to the new item, or the

AddLast method to insert an element at the end of the list, setting the Next property of the

previously last item to refer to the new item. We can also use the AddBefore and

AddAfter methods to insert an element before or after a specified item in the list.

 We can find the first item in a LinkedList<T> collection by querying the First property,

whereas the Last property returns a reference to the final item in the list. To iterate

through a linked list, We can start at one end and step through the Next or Previous

references until We find an item with a null value for this property. Alternatively, We can

use a foreach statement, which iterates forward through a LinkedList<T> object and

stops automatically at the end.

 We delete an item from a LinkedList<T> collection by using the Remove, RemoveFirst,

and RemoveLast methods.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 133

The Queue<T> collection class

 The Queue<T> class implements a first-in, first-out mechanism. An element is inserted

into the queue at the back (the Enqueue operation) and is removed from the queue at the

front (the Dequeue operation).

The Stack<T> collection class

 The Stack<T> class implements a last-in, first-out mechanism. An element joins the

stack at the top (the push operation) and leaves the stack at the top (the pop operation).

To visualize this, think of a stack of dishes: new dishes are added to the top and dishes

are removed from the top, making the last dish to be placed on the stack the first one to

be removed.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 134

The Dictionary<TKey, TValue> collection class

 The array and List<T> types provide a way to map an integer index to an element,

However, sometimes We might want to implement a mapping in which the type from

which We map is not an int but rather some other type, such as string, double, or Time. In

other languages, this is often called an associative array.

 The Dictionary<TKey, TValue> class implements this functionality by internally

maintaining two arrays, one for the keys from which you’re mapping and one for the

values to which you’re mapping. When We insert a key/value pair into a

Dictionary<TKey, TValue> collection, it automatically tracks which key belongs to

which value and makes it possible for Weto retrieve the value that is associated with a

specified key quickly and easily.

 The design of the Dictionary<TKey, TValue> class has some important consequences:

1) A Dictionary<TKey, TValue> collection cannot contain duplicate keys.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 135

2) Internally, a Dictionary<TKey, TValue> collection is a sparse data structure that

operates most efficiently when it has plenty of memory with which to work.

 When We use a foreach statement to iterate through a Dictionary<TKey, TValue>

collection, We get back a KeyValuePair<TKey, TValue> item. This is a structure that

contains a copy of the key and value elements of an item in the Dictionary<TKey,

TValue> collection, and We can access each element through the Key property and the

Value properties.

The SortedList<TKey, TValue> collection class

 The SortedList<TKey, TValue> class is very similar to the Dictionary<TKey, TValue>

class in that you can use it to associate keys with values. The main difference is that the

keys array is always sorted, data retrieval is often quicker (or at least as quick), and

SortedList<TKey, TValue> class uses less memory.

 When you insert a key/value pair into a SortedList<TKey, TValue> collection, the key is

inserted into the keys array at the correct index to keep the keys array sorted. The value is

then inserted into the values array at the same index. The SortedList<TKey, TValue>

class automatically ensures that keys and values maintain synchronization, even when

you add and remove elements. This means that you can insert key/value pairs into a

SortedList<TKey, TValue> in any sequence; they are always sorted based on the value of

the keys.

 Like the Dictionary<TKey, TValue> class, a SortedList<TKey, TValue> collection

cannot contain duplicate keys. When you use a foreach statement to iterate through a

SortedList<TKey, TValue>, you receive back a KeyValuePair<TKey, TValue> item.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 136

However, the KeyValuePair<TKey, TValue> items will be returned sorted by the Key

property.

The HashSet<T> collection class

 The HashSet<T> class is optimized for performing set operations such as

determining set membership and generating the union and intersect of sets.

 We insert items into a HashSet<T> collection by using the Add method, and you

delete items by using the Remove method. However, the real power of the

HashSet<T> class is provided by the IntersectWith, UnionWith, and ExceptWith

methods. These methods modify a HashSet<T> collection to generate a new set that

either intersects with, has a union with, or does not contain the items in a specified

HashSet<T> collection.

 We can also determine whether the data in one HashSet<T> collection is a superset

or subset of another by using the IsSubsetOf, IsSupersetOf, IsProperSubsetOf, and

IsProperSupersetOf methods. These methods return a Boolean value and are

nondestructive.

 Internally, a HashSet<T> collection is held as a hash table, enabling fast lookup of

items. However, a large HashSet<T> collection can require a significant amount of

memory to operate quickly.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 137

Using collection initializers

 The examples in the preceding subsections have shown you how to add individual

elements to a collection by using the method most appropriate to that collection (Add for

a List<T> collection, Enqueue for a Queue<T> collection, Push for a Stack<T>

collection, and so on). You can also initialize some collection types when you declare

them, using a syntax similar to that supported by arrays.

List<int> numbers = new List<int>(){10, 9, 8, 7, 7, 6, 5, 10, 4, 3, 2, 1};

 For more complex collections that take key/value pairs, such as the Dictionary<TKey,

TValue> class, you can specify each key/value pair as an anonymous type in the

initializer list, like this:

Dictionary<string, int> ages = new Dictionary<string, int>(){{"John", 44},

{"Diana", 45}, {"James", 17}, {"Francesca", 15}};

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 138

The Find methods, predicates, and lambda expressions

 Using the dictionary-oriented collections (Dictionary<TKey, TValue>,

SortedDictionary<TKey, TValue>, and SortedList<TKey, TValue>), you can quickly

find a value by specifying the key to search for, and you can use array notation to access

the value, as you have seen in earlier examples. Other collections that support nonkeyed

random access, such as the List<T> and LinkedList<T> classes, do not support array

notation but instead provide the Find method to locate an item.

 In the case of the Find method, as soon as the first match is found, the corresponding

item is returned. Note that the List<T> and LinkedList<T> classes also support other

methods such as FindLast, which returns the last matching object, and the List<T> class

additionally provides the FindAll method, which returns a List<T> collection of all

matching objects.

 The easiest way to specify the predicate is to use a lambda expression. A lambda

expression is an expression that returns a method.

 A lambda expression contains two of these elements: a list of parameters and a method

body. Lambda expressions do not define a method name, and the return type (if any) is

inferred from the context in which the lambda expression is used.

 In the call to the Find method, the argument (Person p) => { return p.ID == 3; } is a

lambda expression that actually does the work. It has the following syntactic items:

1) A list of parameters enclosed in parentheses. As with a regular method, if the

method you are defining (as in the preceding example) takes no parameters, you

must still provide the parentheses.

2) The => operator, which indicates to the C# compiler that this is a lambda

expression.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 139

3) The body of the method. The example shown here is very simple, containing a

single statement that returns a Boolean value indicating whether the item specified in

the parameter matches the search criteria.

 A simplified form of the Find statement shown previously looks like this

Person match = personnel.Find(p => p.ID == 3);

Comparing arrays and collections

Here’s a summary of the important differences between arrays and collections:

 An array instance has a fixed size and cannot grow or shrink. A collection can

dynamically resize itself as required.

 An array can have more than one dimension. A collection is linear. However, the items in

a collection can be collections themselves, so you can imitate a multidimensional array as

a collection of collections.

 We store and retrieve an item in an array by using an index. Not all collections support

this notion. For example, to store an item in a List<T> collection, you use the Add or

Insert methods, and to retrieve an item, you use the Find method.

 Many of the collection classes provide a ToArray method that creates and populates an

array containing the items in the collection. The items are copied to the array and are not

removed from the collection. Additionally, these collections provide constructors that can

populate a collection directly from an array.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 140

MODULE 5[CHAPTER 1]

Enumerating collections

Let’s consider foreach statement before using collections, an example of using the foreach

statement to list the items in a simple array. The code looks like this:

int[] pins = { 9, 3, 7, 2 };

 foreach (int pin in pins)

{

Console.WriteLine(pin);

}

 The foreach construct provides an elegant mechanism that greatly simplifies the code we

need to write, but it can be exercised only under certain circumstances—we can use

foreach only to step through an enumerable collection.

So, what is an enumerable collection?

 The answer is that it is a collection that implements the System.Collections.IEnumerable

interface. The IEnumerable interface contains a single method called GetEnumerator:

IEnumerator GetEnumerator();

 The GetEnumerator method return an enumerator object that implements the

System.Collections.IEnumerator interface. The enumerator object is used for stepping

through (enumerating) the elements of the collection. The IEnumerator interface

specifies the following property and methods:

object Current { get; }
bool MoveNext();
void Reset();

 consider an enumerator as a pointer indicating elements in a list. Initially, the pointer

points before the first element. We call the MoveNext method to move the pointer down

to the next (first) item in the list; the MoveNext method should return true if there actually

is another item and false if there isn’t.

 we use the Current property to access the item currently pointed to, and we use the Reset

method to return the pointer back to before the first item in the list. By creating an

enumerator by using the GetEnumerator method of a collection and repeatedly calling the

MoveNext method and retrieving the value of the Current property by using the

enumerator, we can move forward through the elements of a collection one item at a

time.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 141

 This is exactly what the foreach statement does. So, if we want to create our own

enumerable collection class, we must implement the IEnumerable interface in our

collection class and also provide an implementation of the IEnumerator interface to be

returned by the GetEnumerator method of the collection class

Implementing an enumerator by using an iterator

The process of making a collection enumerable can become complex and potentially error-prone.

To make life easier, C# provides iterators that can automate much of this process.

 An iterator is a block of code that yields an ordered sequence of values. An iterator is not

actually a member of an enumerable class; rather, it specifies the sequence that an

enumerator should use for returning its values. In other words, an iterator is just a

description of the enumeration sequence that the C# compiler can use for creating its own

enumerator

A simple iterator

 The following BasicCollection<T> class illustrates the principles of implementing an

iterator. The class uses a List<T> object for holding data and provides the FillList

method for populating this list. Notice also that the BasicCollection<T> class

implements the IEnumerable<T> interface. The GetEnumerator method is implemented

by using an iterator:

using System;

using System.Collections.Generic;

 using System.Collections;

class BasicCollection<T> : IEnumerable<T>

{

private List<T> data = new List<T>();

 public void FillList(params T [] items)

{

foreach (var datum in items)

{

data.Add(datum);

} }

IEnumerator<T> IEnumerable<T>.GetEnumerator()

{

foreach (var datum in data)

{

yield return datum; } }

 IEnumerator IEnumerable.GetEnumerator()

{ // Not implemented in this example throw new NotImplementedException(); } }

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 142

 The GetEnumerator method it loops through the items in the data array,

returning each item in turn. The key point is the use of the yield keyword.

The yield keyword indicates the value that should be returned by each

iteration. we can think of the yield statement as calling a temporary halt to

the method, passing back a value to the caller.

 When the caller needs the next value, the GetEnumerator method continues

at the point at which it left off, looping around and then yielding the next

value. Eventually, the data is exhausted, the loop finishes, and the

GetEnumerator method terminates. At this point, the iteration is complete.

 The code in the GetEnumerator method defines an iterator. The compiler uses this code

to generate an implementation of the IEnumerator<T> class containing a Current

method and a MoveNext method.

 we can invoke the enumerator generated by the iterator in the usual manner, as shown in

the following block of code, which displays the words in the first line of the poem

“Jabberwocky” by Lewis Carroll:

BasicCollection<string> bc = new BasicCollection<string>();

bc.FillList("Twas", "brillig", "and", "the", "slithy", "toves");

foreach (string word in bc)

{ Console.WriteLine(word); }

This code simply outputs the contents of the bc object in this order:

Twas, brillig, and, the, slithy, toves

 If we want to provide alternative iteration mechanisms presenting the data in a different

sequence, we can implement additional properties that implement the IEnumerable

interface and that use an iterator for returning data. For example, the Reverse property of

the BasicCollection<T> class, shown here, emits the data in the list in reverse order:

class BasicCollection<T> : IEnumerable<T>

{

...

 public IEnumerable<T> Reverse

{

get {

for (int i = data.Count - 1; i >= 0; i--)

{

yield return data[i]; } }

} }

You can invoke this property as follows:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 143

BasicCollection<string> bc = new BasicCollection<string>(); bc.FillList("Twas", "brillig",

"and", "the", "slithy", "toves");

foreach (string word in bc.Reverse)

{ Console.WriteLine(word); }

This code outputs the contents of the bc object in reverse order:

toves, slithy, the, and, brillig, Twas

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 144

MODULE 5[CHAPTER 2]

Querying in-memory data by using query expressions
C# provides for querying data we have seen that we can define structures and classes for

modeling data and that you can use collections and arrays for temporarily storing data in

memory. However, to perform common tasks such as searching for items in a collection that

match a specific set of criteria For example, if we have a collection of Customer objects, how do

we find all customers that are located in London, or how can we find out which town has the

most customers that have procured your services?

Solution :we can write our own code to iterate through a collection and examine the fields in

each object, but these types of tasks occur so often that the designers of C# decided to include

features in the language to minimize the amount of code we need to write. so will learn how to

use these advanced C# language features to query and manipulate data.

What is Language-Integrated Query?

The features that abstract the mechanism that an application uses to query data from application

code itself. These features are called Language-Integrated Query, or LINQ. LINQ provides

syntax and semantics very reminiscent of SQL, and with many of the same advantages. We can

change the underlying structure of the data being queried without needing to change the code

that actually performs the queries.

Using LINQ in a C# application

To use the C# features that support LINQ is to work through some simple examples based on the

following sets of customer and address information:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 145

 LINQ requires the data to be stored in a data structure that implements the IEnumerable

or IEnumerable<T> interface.It does not matter what structure we use (an array, a

HashSet<T>, a Queue<T>, or any of the other collection types, or even one that you

define yourself) as long as it is enumerable.

 However assume that the customer and address information is held in the customers and

addresses arrays shown in the following code example

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 146

Selecting data

Suppose that we want to display a list consisting of the first name of each customer in the

customers array. we can achieve this task with the following code:

IEnumerable<string> customerFirstNames = customers.Select(cust => cust.FirstName);

foreach (string name in customerFirstNames)

{ Console.WriteLine(name);}

Using the Select method, we can retrieve specific data from the array—in this case, just the value

in the FirstName field of each item in the array. The parameter to the Select method is actually

another method that takes a row from the customers array and returns the selected data from that

row. There are three important things that you need to understand at this point:

 The variable cust is the parameter passed in to the method. we can think of cust as an

alias for each row in the customers array. The compiler deduces this from the fact that

you are calling the Select method on the customers array. We can use any legal C#

identifier in place of cust.

 The Select method does not actually retrieve the data at this time; it simply returns an

enumerable object that will fetch the data identified by the Select method when you

iterate over it later.

 The Select method is not actually a method of the Array type. It is an extension method of

the Enumerable class. The Enumerable class is located in the System.Linq namespace and

provides a substantial set of static methods for querying objects that implement the

generic IEnumerable<T> interface.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 147

The preceding example uses the Select method of the customers array to generate an

IEnumerable<string> object named customerFirstNames. The foreach statement iterates

through this collection of strings, printing out the first name of each customer in the following

sequence:

The important point to understand is that the Select method returns an enumerable collection

based on a single type. If we want the enumerator to return multiple items of data, such as the

first and last name of each customer, we have at least two options:

 You can concatenate the first and last names together into a single string in the Select

method, like this:

 You can define a new type that wraps the first and last names, and use the Select method

to construct instances of this type, like this:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 148

Filtering data

With the Select method, we can specify, or project, the fields that we want to include in the

enumerable collection. However, we might also want to restrict the rows that the enumerable

collection contains. For example, suppose we want to list the names of all companies in the

addresses array that are located in the United States only. To do this, we can use the Where

method, as follows:

The Where method is similar to Select. It expects a parameter that defines a method that filters

the data according to whatever criteria we specify. The foreach statement that iterates through

this collection displays the following companies:

Coho Winery

Trey Research

Ordering, grouping, and aggregating data

To retrieve data in a particular order, you can use the OrderBy method. Like the Select and Where methods, OrderBy expects a

method as its argument. This method identifies the expressions that you want to use to sort the data. For example, you can

display the name of each company in the addresses array in ascending order, like this:

This block of code displays the companies in the addresses table in alphabetical order.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 149

 If you want to enumerate the data in descending order, you can use the

OrderByDescending method, instead. If you want to order by more than one key value,

you can use the ThenBy or ThenByDescending method after OrderBy or

OrderByDescending.

To group data according to common values in one or more fields, you can use the GroupBy

method. The following example shows how to group the companies in the addresses array by

country:

The GroupBy method expects a method that specifies the fields by which to group the data. The

output generated by the example code looks like this:

Country: Switzerland 1 companies

Alpine Ski House

Country: United States 2 companies

Coho Winery

Trey Research

Country: United Kingdom 2 companies

Wingtip Toys

Wide World Importers

 You can use many of the summary methods such as Count, Max, and Min directly over

the results of the Select method

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 150

 Notice that the result of these methods is a single scalar value rather than an enumerable

collection. The output from the preceding block of code looks like this:

Number of companies: 5

 In fact, there are only three different countries in the addresses array—it just so happens that United States and

United Kingdom both occur twice. You can eliminate duplicates from the calculation by using the Distinct method, like

this:

The Console.WriteLine statement now outputs the expected result:

Number of countries: 3

Joining data

Just like SQL, LINQ gives you the ability to join multiple sets of data together over one or more

common key fields. The following example shows how to display the first and last names of

each customer, together with the name of the country where the customer is located

 The customers’ first and last names are available in the customers array, but the country

for each company that customers work for is stored in the addresses array. The common

key between the customers array and the addresses array is the company name.

 The Select method specifies the fields of interest in the customers array (FirstName and

LastName), together with the field containing the common key (CompanyName). You

use the Join method to join the data identified by the Select method with another

enumerable collection. The parameters to the Join method are as follows:

 The enumerable collection with which to join

 A method that identifies the common key fields from the data identified by the Select

method

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 151

 A method that identifies the common key fields on which to join the selected data

 A method that specifies the columns you require in the enumerable result set returned by

the Join method

The code that outputs the data from the companiesAndCustomers collection displays the

following information:

Using query operators

 The previous examples shown you many of the features available for querying in-

memory data by using the extension methods for the Enumerable class defined in the

System.Linq namespace. The syntax makes use of several advanced C# language features,

and the resultant code can sometimes be quite hard to understand and maintain.

 To relieve you of some of this burden, the designers of C# added query operators to the

language with which you can employ LINQ features by using a syntax more akin to SQL

 You can rephrase previous retrieve first name query can be replaced using the from and

select query operators, like this:

 Continuing in the same vein, to retrieve the first and last names for each customer, you

can use the following statement

 You use the where operator to filter data. The following example shows how to return the

names of the companies based in the United States from the addresses array:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 152

 To order data, use the orderby operator, like this:

 You can group data by using the group operator in the following manner

 You can invoke the summary functions such as Count over the collection returned by an

enumerable collection, like this:

 If you want to ignore duplicate values, use the Distinct method:

 You can use the join operator to combine two collections across a common key. The

following example shows the query returning customers and addresses over the

CompanyName column in each collection, this time rephrased using the join operator

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 153

MODULE 5[CHAPTER 3]

Operator overloading

Understanding operators

 You use operators to combine operands together into expressions. Each operator has its

own semantics, dependent on the type with which it works. For example, the + operator

means “add” when you use it with numeric types, or it means “concatenate” when you

use it with strings.

 Each operator has a precedence. For example, the * operator has a higher precedence

than the + operator. This means that the expression a + b * c is the same as a + (b * c).

 Each operator also has an associativity to define whether the operator evaluates from left

to right or from right to left. For example, the = operator is right-associative (it evaluates

from right to left), so a = b = c is the same as a = (b = c).

 A unary operator is an operator that has just one operand. For example, the increment

operator (++) is a unary operator.

 A binary operator is an operator that has two operands. For example, the multiplication

operator (*) is a binary operator.

Operator constraints

 You cannot change the precedence and associativity of an operator. The precedence and

associativity are based on the operator symbol (for example, +) and not on the type (for

example, int) on which the operator symbol is being used. Hence, the expression a + b *

c is always the same as a + (b * c), regardless of the types of a, b, and c.

 You cannot change the multiplicity (the number of operands) of an operator. For

example, * (the symbol for multiplication) is a binary operator. If you declare a *

operator for your own type, it must be a binary operator.

 You cannot invent new operator symbols. For example, you can’t create a new operator

symbol, such as ** for raising one number to the power of another number. You’d have

to create a method to do that.

 You can’t change the meaning of operators when applied to built-in types. For example,

the expression 1 + 2 has a predefined meaning, and you’re not allowed to override this

meaning. If you could do this, things would be too complicated.

 There are some operator symbols that you can’t overload. For example, you can’t

overload the dot (.) operator, which indicates access to a class member. Again, if you

could do this, it would lead to unnecessary complexity.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 154

Overloaded operators

 To define your own operator behavior, you must overload a selected operator. You use

method-like syntax with a return type and parameters, but the name of the method is the

keyword operator together with the operator symbol you are declaring.

 For example, the following code shows a user-defined structure named Hour that defines

a binary + operator to add together two instances of Hour:

Notice the following:

 The operator is public. All operators must be public.

 The operator is static. All operators must be static. Operators are never polymorphic and

cannot use the virtual, abstract, override, or sealed modifiers.

 A binary operator (such as the + operator shown earlier) has two explicit arguments, and

a unary operator has one explicit argument.

When you use the + operator on two expressions of type Hour, the C# compiler automatically

converts your code to a call to your operator + method. The C# compiler transforms this code

to this:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 155

Creating symmetric operators

 In the preceding section, you saw how to declare a binary + operator to add together two

instances of type Hour. The Hour structure also has a constructor that creates an Hour

from an int. This means that you can add together an Hour and an int; you just have to

first use the Hour constructor to convert the int to an Hour, as in the following example:

 This is certainly valid code, but it is not as clear or concise as adding together an Hour

and an int directly, like this:

 To make the expression (a + b) valid, you must specify what it means to add together an

Hour (a, on the left) and an int (b, on the right). In other words, you must declare a binary

+ operator whose first parameter is an Hour and whose second parameter is an int. The

following code shows the recommended approach:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 156

 This operator+ declares how to add together an Hour as the left operand and an int as the

right operand. It does not declare how to add together an int as the left operand and an

Hour as the right operand:

 This is counterintuitive. If you can write the expression a + b, you expect to also be able

to write b + a. Therefore, you should provide another overload of operator+:

Understanding compound assignment evaluation

 A compound assignment operator (such as +=) is always evaluated in terms of its

associated simple operator (such as +). In other words, the statement

 a += b;

 is automatically evaluated like this:

 a = a + b;

 In general, the expression a @= b (where @ represents any valid operator) is always

evaluated as a = a @ b. If you have overloaded the appropriate simple operator, the

overloaded version is automatically called when you use its associated compound

assignment operator, as is shown in the following example:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 157

 The first compound assignment expression (a += a) is valid because a is of type Hour,

and the Hour type declares a binary operator+ whose parameters are both Hour.

Similarly, the second compound assignment expression (a += b) is also valid because a

is of type Hour and b is of type int. The Hour type also declares a binary operator+

whose first parameter is an Hour and whose second parameter is an int.

 Be aware, however, that you cannot write the expression b += a because that’s the same

as b = b + a. Although the addition is valid, the assignment is not, because there is no

way to assign an Hour to the built-in int type

Declaring increment and decrement operators

 With C#, you can declare your own version of the increment (++) and decrement (– –)

operators. The usual rules apply when declaring these operators: they must be public,

they must be static, and they must be unary (they can take only a single parameter). Here

is the increment operator for the Hour structure:

 The increment and decrement operators are unique in that they can be used in prefix and

postfix forms. C# cleverly uses the same single operator for both the prefix and postfix

versions. The result of a postfix expression is the value of the operand before the

expression takes place. In other words, the compiler effectively converts the code

Hour now = new Hour(9);

Hour postfix = now++;

to this:

Hour now = new Hour(9);

Hour postfix = now;

now = Hour.operator ++(now); // pseudocode, not valid C#

 The result of a prefix expression is the return value of the operator, so the C# compiler

effectively transforms the code

Hour now = new Hour(9);

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 158

Hour prefix = ++now;

to this:

Hour now = new Hour(9);

now = Hour.operator ++(now); // pseudocode, not valid C#

Hour prefix = now;

 This equivalence means that the return type of the increment and decrement operators

must be the same as the parameter type.

Comparing operators in structures and classes

 Be aware that the implementation of the increment operator in the Hour structure works

only because Hour is a structure. If you change Hour into a class but leave the

implementation of its increment operator unchanged, you will find that the postfix

translation won’t give the correct answer.

 you can see in the following example why the operators for the Hour class no longer

function as expected:

 If Hour is a class, the assignment statement postfix = now makes the variable postfix refer

to the same object as now. Updating now automatically updates postfix! If Hour is a

structure, the assignment statement makes a copy of now in postfix, and any changes to

now leave postfix unchanged.

The correct implementation of the increment operator when Hour is a class is as follows:

 Notice that operator ++ now creates a new object based on the data in the original. The

data in the new object is incremented, but the data in the original is left unchanged.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 159

Defining operator pairs

 Some operators naturally come in pairs. For example, if you can compare two Hour

values by using the != operator, you would expect to be able to also compare two Hour

values by using the == operator.

 Here are the == and != operators for the Hour structure:

 This neither-or-both rule also applies to the < and > operators and the <= and >=

operators.

Understanding conversion operators

 Sometimes, you need to convert an expression of one type to another. For example, the

following method is declared with a single double parameter:

 You might reasonably expect that only values of type double could be used as arguments

when calling MyDoubleMethod, but this is not so. The C# compiler also allows

MyDoubleMethod to be called with an argument of some other type, but only if the value

of the argument can be converted to a double.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 160

 For example, if you provide an int argument, the compiler generates code that converts

the value of the argument to a double when the method is called.

Providing built-in conversions

 The built-in types have some built-in conversions. For example, as mentioned

previously, an int can be implicitly converted to a double. An implicit cThe built-in

types have some built-in conversions. For example, an int can be implicitly converted

to a double. An implicit conversion requires no special syntax and never throws an
exception.onversion requires no special syntax and never throws an exception.

 Example.MyDoubleMethod(42); // implicit int-to-double conversion

 An implicit conversion is sometimes called a widening conversion because the result

is wider than the original value—it contains at least as much information as the

original value, and nothing is lost. In the case of int and double, the range of double is

greater than that of int, and all int values have an equivalent double value. However,

the converse is not true, and a double value cannot be implicitly converted to an int:

 When you convert a double to an int, you run the risk of losing information, so the

conversion will not be performed automatically. (Consider what would happen if the

argument to MyIntMethod were 42.5: How should this be converted?) A double can

be converted to an int, but the conversion requires an explicit notation (a cast):

 Example.MyIntMethod((int)42.0);

 An explicit conversion is sometimes called a narrowing conversion because the

result is narrower than the original value (that is, it can contain less information) and

can throw an OverflowException exception if the resulting value is out of the range of

the target type.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 161

Implementing user-defined conversion operators

 The syntax for declaring a user-defined conversion operator has some similarities to

that for declaring an overloaded operator, but also some important differences. Here’s

a conversion operator that allows an Hour object to be implicitly converted to an int:

 A conversion operator must be public and it must also be static. The type from which

you are converting is declared as the parameter (in this case, Hour), and the type to

which you are converting is declared as the type name after the keyword operator (in

this case, int). There is no return type specified before the keyword operator

 When declaring your own conversion operators, you must specify whether they are

implicit conversion operators or explicit conversion operators. You do this by using

the implicit and explicit keywords. For example, the Hour to int conversion operator

mentioned earlier is implicit, meaning that the C# compiler can use it without

requiring a cast.

 If the conversion operator had been declared explicit, the preceding example

would not have compiled, because an explicit conversion operator requires a cast.

Example.MyOtherMethod((int)lunch); // explicit Hour to int conversion

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 162

MODULE 5[CHAPTER 4]

Decoupling application logic and handling events

Understanding delegates

A delegate is a reference to a method. It is a very simple concept with extraordinarily powerful

implications.

Note :Delegates are so named because they “delegate” processing to the referenced method

when they are invoked

 A delegate is an object that refers to a method. You can assign a reference to a method to

a delegate in much the same way that you can assign an int value to an int variable. The

example creates a delegate named performCalculationDelegate that references the

performCalculation method of the Processor object.

 It is important to understand that the statement that assigns the method reference to the

delegate does not run the method at this point; there are no parentheses after the method

name, and you do not specify any parameters This is just an assignment statement.

 Having stored a reference to the performCalculation method of the Processor object in

the delegate, the application can subsequently invoke the method through the delegate,

like this:

performCalculationDelegate();

Examples of delegates in the .NET Framework class library

The Microsoft .NET Framework class library makes extensive use of delegates for many of its

types, here we have some examples

The following code use the Find method:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 163

 Other examples of methods exposed by the List<T> class that use delegates to perform

their operations include Average, Max, Min, Count, and Sum.

 In the following examples, the Average method is used to calculate the average age of

items in the personnel collection (the Func<T> delegate simply returns the value in the

Age field of each item in the collection), the Max method is used to determine the item

with the highest ID, and the Count method calculates how many items have an Age

between 30 and 39 inclusive.

This code generates the following output:

Example: The automated factory scenario

Consider writing the control systems for an automated factory. The factory contains a large

number of different machines, each performing distinct tasks in the production of the articles

manufactured by the factory—shaping and folding metal sheets, welding sheets together,

painting sheets, and so on.

Each machine has its own unique computer-controlled process (and functions) for shutting down

safely, as summarized here:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 164

Implementing the factory control system without using delegates

A simple approach to implementing the shutdown functionality in the control program is as

follows:

 Although this approach works, it is not very extensible or flexible. If the factory buys a

new machine, you must modify this code; the Controller class and code for managing the

machines is tightly coupled.

Implementing the factory by using a delegate

 Although the names of each method are different, they all have the same “shape”: they

take no parameters, and they do not return a value. The general format of each method,

therefore, is this:

void methodName();

 This is where a delegate can be useful. You can use a delegate that matches this shape to

refer to any of the machinery shutdown methods. You declare a delegate like this:

 delegate void stopMachineryDelegate();

Note the following points:

 You use the delegate keyword.

 You specify the return type (void in this example), a name for the delegate

(stopMachinery Delegate), and any parameters (there are none in this case).

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 165

 After you have declared the delegate, you can create an instance and make it refer to a

matching method by using the += compound assignment operator. We can do this in the

constructor of the controller class like this:

 It is safe to use the += operator on an uninitialized delegate. It will be initialized

automatically. Alternatively, you can use the new keyword to initialize a delegate

explicitly with a single specific method, like this:

this.stopMachinery = new stopMachineryDelegate(folder.StopFolding);

 You can call the method by invoking the delegate, like this:

 An important advantage of using a delegate is that it can refer to more than one method at

the same time. You simply use the += operator to add methods to the delegate, like this:

Invoking this.stopMachinery() in the Shutdown method of the Controller class automatically

calls each of the methods in turn. The Shutdown method does not need to know how many

machines there are or what the method names are.

 You can remove a method from a delegate by using the –= compound assignment

operator, as demonstrated here:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 166

 this.stopMachinery -= folder.StopFolding;

 The current scheme adds the machine methods to the delegate in the Controller

constructor. To make the Controller class totally independent of the various machines,

you need to make stopMachineryDelegate type public and supply a means of enabling

classes outside Controller to add methods to the delegate. You have several options:

 Make the stopMachinery delegate variable, public:

 public stopMachineryDelegate stopMachinery ;

 Keep the stopMachinery delegate variable private, but create a read/write property to

provide access to it:

 Provide complete encapsulation by implementing separate Add and Remove methods.

The Add method takes a method as a parameter and adds it to the delegate, whereas the

Remove method removes the specified method from the delegate.

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 167

Lambda expressions and delegates

 All the examples of adding a method to a delegate that you have seen so far use the

method’s name. For example, returning to the automated factory scenario described

earlier, you add the StopFolding method of the folder object to the stopMachinery

delegate, like this

this.stopMachinery += folder.StopFolding;

 This approach is very useful if there is a convenient method that matches the signature

of the delegate, but what if this is not the case? Suppose that the StopFolding method

actually had the following signature:

void StopFolding(int shutDownTime); // Shut down in the specified number of seconds

 This signature is now different from that of the FinishWelding and PaintOff methods, and

therefore you cannot use the same delegate to handle all three methods so the solution:

Creating a method adapter

Solution is to create another method that calls StopFolding but that takes no parameters itself,

like this:

 You can then add the FinishFolding method to the stopMachinery delegate in place of the

StopFolding method, using the same syntax as before:

 this.stopMachinery += folder.FinishFolding;

 When the stopMachinery delegate is invoked, it calls FinishFolding, which in turn calls

the Stop Folding method, passing in the parameter of 0

The forms of lambda expressions

 some examples showing the different forms of lambda expressions available in C#:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 168

 some features of lambda expressions of which you should be aware:

1) If a lambda expression takes parameters, you specify them in the parentheses to the

left of the => operator. You can omit the types of parameters, and the C# compiler

will infer their types from the context of the lambda expression.

2) Lambda expressions can return values, but the return type must match that of the

delegate to which they are being added.

3) The body of a lambda expression can be a simple expression or a block of C# code

made up of multiple statements, method calls, variable definitions, and other code

items.

4) Variables defined in a lambda expression method go out of scope when the method

finishes.

5) A lambda expression can access and modify all variables outside the lambda

expression that are in scope when the lambda expression is defined.

Declaring an event

 An event source is usually a class that monitors its environment and raises an event when

something significant happens. In the automated factory, an event source could be a class

that monitors the temperature of each machine. The temperature-monitoring class would

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 169

raise a “machine overheating” event if it detects that a machine has exceeded its thermal

radiation boundary (that is, it has become too hot).

 We declare an event similarly to how you declare a field. However, because events are

intended to be used with delegates, the type of an event must be a delegate, and we must

prefix the declaration with the event keyword. Use the following syntax to declare an

event:

event delegateTypeName eventName

 As an example, here’s the StopMachineryDelegate delegate from the automated factory.

It has been relocated to a new class called TemperatureMonitor. We can define the

MachineOverheating event, which will invoke the stopMachineryDelegate, like this:

Subscribing to an event

Like delegates, events come ready-made with a += operator. We subscribe to an event by using

this += operator.

Unsubscribing from an event

Knowing that you use the += operator to attach a delegate to an event, we can probably guess

that you use the –= operator to detach a delegate from an event.

Raising an event

We can raise an event, just like a delegate, by calling it like a method. When we raise an event,

all the attached delegates are called in sequence. For example, here’s the TemperatureMonitor

class with a private Notify method that raises the MachineOverheating event:

Maharaja Institute of Technology Mysore Department of ISE

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT (17CS564) Page 170

